82 research outputs found

    Application of the Analytic Hierarchy Process to Riparian Revegetation Policy Options

    Get PDF
    While riparian vegetation can play a major role in protecting land, water and natural habitat in catchments, there are high costs associated with tree planting and establishment and in diverting land from cropping. The distribution of costs and benefits of riparian revegetation creates conflicts in the objectives of various stakeholder groups, and elicitation of importance weights of objectives and determination of rankings of a number of policy options by these stakeholder groups becomes critical in decision-making. The analytic hierarchy process (AHP) is a multicriteria analysis technique that provides an appropriate tool to accommodate the conflicting views of various stakeholder groups. The AHP allows the users to assess the relative importance of multiple criteria (or multiple alternatives against a given criterion) in an intuitive manner. This paper presents an application of AHP to obtain preference weights of environmental, social and economic objectives which have been used in ranking riparian revegetation policy options in a small catchment (watershed) in north Queensland, Australia. The preference weights towards environmental, economic and social objectives have been obtained for the various stakeholder groups (landholders, representatives of local sugar mill staff, environmentalists, recreational fishers and the local community). The AHP technique has proved useful in eliciting objectives and ranking policy options as well as in checking for consistency of the statements of stakeholder groups. Implementation of this approach requires a complex data elicitation process

    Rescheduling of wet season (T. Aman) rice planting for cropping intensification in coastal Bangladesh

    Get PDF
    About 1.0 million ha coastal lands in Bangladesh are mono-cropped suffer from varying degree of soil salinity, waterlogging and climate vulnerability. Low yielding, traditional T. Aman rice is grown only in wet season. Growing non-rice crop after late harvested T. Aman rice is not profitable. This study was aimed to introduce high yielding, short duration T. Aman rice varieties for advancing its harvesting time and to make the avenue for timely establishment of dry season crops. Varietal trials were made at Dacope and Amtali under ACIAR funded project during 2016-2018 and compared with local cultivars. Among tested varieties BRRI dhan76 followed by BRRI dhan77 and BRRI dhan54 in Dacope and BRRI dhan77 followed by BRRI dhan76 and BRRI dhan54 in Amtali were preferred for 0.5–1.0 tha−1 yield advantage and 15–25 days earliness compared to traditional varieties. Early harvesting of T. Aman created the avenue of timely establishment of rice and non-rice crops depending on availability of fresh water and thus crop intensification and land productivity was improved. The new cropping system increased annual rice yield and farmers’ profits by 1.5- to 2-folds compared with traditional system without environmental degradation. This technique can be replicated in similar coastal zones of Bangladesh

    Cropping system intensification for increasing crop productivity in salt-affected coastal zones of Bangladesh

    Get PDF
    In Global Climate Risk Index 2019, Bangladesh has been ranked seventh among the countries most affected by extreme weather events. The salinity intrusion has increased by 27% from 1973 to 2009 in coastal areas of Bangladesh due to impacts of climate change. The cropping intensities of the coastal zones are below than the country’s average intensity (195%), which causes severe food insecurity. In southern coastal zone, soil and water (river/canal) salinity remain the minimum (<4 dS/m) during in July/August but attain the maximum (upto 11 and 25 dS/m, respectively) in March/April. Farmers grow single T.aman rice a year. Therefore, five cropping patterns were tested under ACIAR funded project in Amtali (Barguna district) and Dacope (Khulna) upazilas during 2016–2017 and 2017–2018 irrigating with low salinity surface water (canal/pond) to increase crop productivity. In Amtali, T.aman-Potato-Mungbean-T.aus cropping pattern gave the highest (20.18 t/ha) rice equivalent yield (REY), which increased 360% REY over the farmers’ practice (T.aman-fallow-fallow). However, in Dacope, T.aman-spinach-fallow showed the highest REY (13.99 t/ha) that increased 211% REY compared to farmers’ practice. The improved cropping patterns can be practiced within the polder (embankment for water control) for increasing crop productivity and profitability in salt-affected coastal zones of Bangladesh

    Utilizing Small External Vibrational Sources to Increase Polishing Material Removal Rates

    Full text link
    Although precision polishing of optical grade components using pitch based tools is still common practice, the process has not received the same level of scientific attention as other precision material removal processes. Building on previous research results, this paper demonstrates the relationship between low amplitude, broad spectrum vibrational power input and fused silica material removal rates obtained with different tool-polishing machine combinations. A low cost, easy to implement method of increasing vibrational power is presented and verified through polishing tests. The method uses small, off the shelf, high speed (&gt;10 krpm), DC motors with eccentric masses (0.5 g and 4 g). Attachment of the battery driven motors to the underside of the platen and the workpiece holder increased the vibrational input from 0.7 W to 0.22 W resulting in an increase in the material removal rate from 0.96 mg/hr to 1.10 mg/hr. A method to attenuate process generated vibrations, and thus material removal rates, is also outlined. To achieve this the tool construction is modified by the addition of a cork layer between the substrate and the pitch layer. While this approach is not as flexible as that for increasing the vibrational power input, it successfully attenuated process vibrations (0.2 W to 0.14 W) and reduced the associated material removal rate (9.67 mg/hr to 6.13 mg/hr). The results outlined this paper demonstrate that recording and controlling process vibrations provides practitioners with viable process monitoring and optimization options.</jats:p
    corecore