4,091 research outputs found

    Temperature-stable Gunn-diode oscillator

    Get PDF
    Oscillator consisting of Gunn diode embedded in coaxial circuit has excellent temperature stability and low fabrication costs as compared with automatic-frequency-control crystal oscillators

    Microscopic theory of thermal phase slips in clean narrow superconducting wires

    Full text link
    We consider structure of a thermal phase-slip center for a simple microscopic model of a clean one-dimensional superconductors in which superconductivity occurs only within one conducting channel or several identical channels. Surprisingly, the Eilenberger equations describing the saddle-point configuration allow for exact analytical solution in the whole temperature and current range. This solution allows us to derive a closed expression for the free-energy barrier, which we use to compute its temperature and current dependences

    Negative Magnetoresistance of Granular Metals in a Strong Magnetic Field

    Full text link
    The magnetoresistance of a granular superconductor in a strong magnetic field destroying the gap in each grain is considered. It is assumed that the tunneling between grains is sufficiently large such that all conventional effects of localization can be neglected. A non-trivial sensitivity to the magnetic field comes from superconducting fluctuations leading to the formation of virtual Cooper pairs and reducing the density of states. At low temperature, the pairs do not contribute to the macroscopic transport but their existence can drastically reduce the conductivity. Growing the magnetic field one destroys the fluctuations, which improves the metallic properties and leads to the negative magnetoresistance.Comment: 4 pages, 1 figure, RevTe

    Disorder and Quantum Fluctuations in Superconducting Films in Strong Magnetic Fields

    Full text link
    We find that the upper critical field in a two-dimensional disordered superconductor can increase essentially at low temperatures. This happens due to the formation of local superconducting islands weakly coupled via the Josephson effect. The distribution of the superconducting islands is derived. It is shown that the value of the critical field is determined by the interplay of the proximity effect and quantum phase fluctuations. We find that the shift of the upper critical field is connected with the pinning properties of a superconductor.Comment: 4 page

    Towards Uniform Gene Bank Documentation In Europe – The Experience From The EFABISnet Project

    Get PDF
    In the EFABISnet project, a collaborative effort of EAAP, FAO and partners from 14 European countries, in cooperation with the European Regional Focal Point for Animal Genetic Resources (ERFP), national information systems for monitoring the animal genetic resources on breed level were established in Austria, Cyprus, Estonia, Georgia, Iceland, Ireland, Italy, Netherlands, Slovakia, Slovenia, Switzerland, and United Kingdom. The network was soon extended beyond the project plans, with the establishment of EFABIS databases in Finland, Greece, and Hungary. The network was then complemented by a set of inventories of national gene bank collections to strengthen the documentation of ex situ conservation programmes. These documentation systems were established by the National Focal Points for management of farm animal genetic resources. Here we present the experience gained in establishment of these national inventories of gene banks and their relevance to the Strategic Priority Areas of the Global Plan of Action which could be useful for other areas in the world

    Neutrino spin rotation in dense matter and electromagnetic field

    Full text link
    Exact solutions of the Dirac--Pauli equation for massive neutrino with anomalous magnetic moment interacting with dense matter and strong electromagnetic field are found. The complete system of neutrino wavefunctions, which show spin rotation properties are obtained and their possible applications are discussed.Comment: 11 pages, latex, misprints are correcte

    Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    Full text link
    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m_beta by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m_2beta from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on Sigma from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-alpha forest data from the Sloan Digital Sky Survey (SDSS), in models with a non-zero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between Sigma and m_2beta constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and non-oscillatory) can further probe the currently allowed regions.Comment: 17 pages (RevTeX) + 7 figures (PostScript). Minor changes in text; references added; results unchanged. To appear in PR

    Impurity effects in unconventional density waves in the unitary limit

    Full text link
    We investigate the effect of strong, nonmagnetic impurities on quasi-one-dimensional conventional and unconventional density waves (DW and UDW). The conventional case remains unaffected similarly to s-wave superconductors in the presence of weak, nonmagnetic impurities. The thermodynamic properties of UDW were found to be identical to those of a d-wave superconductor in the unitary limit. The real and imaginary part of the optical conductivity is determined for electric fields applied in the perpendicular directions. A new structure can be present corresponding to excitations from the bound state at the Fermi energy to the gap maximum in addition to the usual peak at 2\Delta. In the dc limit, universal electric conductivity is found.Comment: 9 pages, 5 figure

    Magnetic pair-breaking in superconducting (Ba,K)BiO_3 investigated by magnetotunneling

    Full text link
    The de Gennes and Maki theory of gapless superconductivity for dirty superconductors is used to interpret the tunneling measurements on the strongly type-II high-Tc oxide-superconductor Ba1-xKxBiO3 in high magnetic fields up to 30 Tesla. We show that this theory is applicable at all temperatures and in a wide range of magnetic fields starting from 50 percent of the upper critical field Bc2. In this magnetic field range the measured superconducting density of states (DOS) has the simple energy dependence as predicted by de Gennes from which the temperature dependence of the pair-breaking parameter alpha(T), or Bc2(T), has been obtained. The deduced temperature dependence of Bc2(T) follows the Werthamer-Helfand-Hohenberg prediction for classical type-II superconductors in agreement with our previous direct determination. The amplitudes of the deviations in the DOS depend on the magnetic field via the spatially averaged superconducting order parameter which has a square-root dependence on the magnetic field. Finally, the second Ginzburg-Landau parameter kappa2(T) has been determined from the experimental data.Comment: 11 pages, 5 figure
    corecore