300 research outputs found
Ensemble v-representable ab-initio density functional calculation of energy and spin in atoms: atest of exchange-correlation approximations
The total energies and the spin states for atoms and their first ions with Z
= 1-86 are calculated within the the local spin-density approximation (LSDA)
and the generalized-gradient approximation (GGA) to the exchange-correlation
(xc) energy in density-functional theory. Atoms and ions for which the
ground-state density is not pure-state v-representable, are treated as ensemble
v- representable with fractional occupations of the Kohn-Sham system. A newly
developed algorithm which searches over ensemble v-representable densities [E.
Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations.
It is found that for many atoms the ionization energies obtained with the GGA
are only modestly improved with respect to experimental data, as compared to
the LSDA. However, even in those groups of atoms where the improvement is
systematic, there remains a non-negligible difference with respect to the
experiment. The ab-initio electronic configuration in the Kohn-Sham reference
system does not always equal the configuration obtained from the spectroscopic
term within the independent-electron approximation. It was shown that use of
the latter configuration can prevent the energy-minimization process from
converging to the global minimum, e.g. in lanthanides. The spin values
calculated ab-initio fit the experiment for most atoms and are almost
unaffected by the choice of the xc-functional. Among the systems with
incorrectly obtained spin there exist some cases (e.g. V, Pt) for which the
result is found to be stable with respect to small variations in the
xc-approximation. These findings suggest a necessity for a significant
modification of the exchange-correlation functional, probably of a non-local
nature, to accurately describe such systems. PACS numbers: 31.15.
Electronic structure of the (111) and (-1-1-1) surfaces of cubic BN: A local-density-functional ab initio study
We present ab initio local-density-functional electronic structure
calculations for the (111) and (-1-1-1) surfaces of cubic BN. The energetically
stable reconstructions, namely the N adatom, N3 triangle models on the (111),
the (2x1), boron and nitrogen triangle patterns on the (-1-1-1) surface are
investigated. Band structure and properties of the surface states are discussed
in detail.Comment: 8 pages, 12 figure
Ferromagnetism in Mn doped GaAs due to substitutional-interstitial complexes
While most calculations on the properties of the ferromagnetic semiconductor
GaAs:Mn have focussed on isolated Mn substituting the Ga site (Mn), we
investigate here whether alternate lattice sites are favored and what the
magnetic consequences of this might be. Under As-rich (Ga-poor) conditions
prevalent at growth, we find that the formation energies are lower for
Mn over interstitial Mn (Mn).As the Fermi energy is shifted towards
the valence band maximum via external -doping, the formation energy of
Mn is reduced relative to Mn. Furthermore, under epitaxial growth
conditions, the solubility of both substitutional and interstitial Mn are
strongly enhanced over what is possible under bulk growth conditions. The high
concentration of Mn attained under epitaxial growth of p-type material opens
the possibility of Mn atoms forming small clusters. We consider various types
of clusters, including the Coulomb-stabilized clusters involving two Mn
and one Mn. While isolated Mn are hole killers (donors), and therefore
destroy ferromagnetism,complexes such as Mn-Mn-Mn) are found
to be more stable than complexes involving Mn-Mn-Mn. The
former complexes exhibit partial or total quenching of holes, yet Mn in
these complexes provide a channel for a ferromagnetic arrangement of the spins
on the two Mn within the complex. This suggests that ferromagnetism in
Mn doped GaAs arises both from holes due to isolated Mn as well as from
strongly Coulomb stabilized Mn-Mn-Mn clusters.Comment: 7 figure
Supercell technique for total-energy calculations of finite charged and polar systems
We study the behavior of total-energy supercell calculations for dipolar molecules and charged clusters. Using a cutoff Coulomb interaction within the framework of a plane-wave basis set formalism, with all other aspects of the method (pseudopotentials, basis set, exchange-correlation functional) unchanged, we are able to assess directly the interaction effects present in the supercell technique. We find that the supercell method gives structures and energies in almost total agreement with the results of calculations for finite systems, even for molecules with large dipole moments. We also show that the performance of finite-grid calculations can be improved by allowing a degree of aliasing in the Hartree energy, and by using a reciprocal space definition of the cutoff Coulomb interaction
Stability of Ge-related point defects and complexes in Ge-doped SiO_2
We analyze Ge-related defects in Ge-doped SiO_2 using first-principles
density functional techniques. Ge is incorporated at the level of ~ 1 mol % and
above. The growth conditions of Ge:SiO_2 naturally set up oxygen deficiency,
with vacancy concentration increasing by a factor 10^5 over undoped SiO_2, and
O vacancies binding strongly to Ge impurities. All the centers considered
exhibit potentially EPR-active states, candidates for the identification of the
Ge(n) centers. Substitutional Ge produces an apparent gap shrinking via its
extrinsic levels.Comment: RevTeX 4 pages, 2 ps figure
Density functional theory study of (OCS)2^-
The structural and electronic properties of the carbonyl sulfide dimer anion
are calculated using density functional theory within a pseudopotential method.
Three geometries are optimized and investigated: C2v and C2 symmetric, as well
as one asymmetric structure. A distribution of an excess charge in three
isomers are studied by the Hirshfeld method. In an asymmetric (OCS)2^- isomer
the charge is not equally divided between the two moieties, but it is
distributed as OCS^{-0.6} OCS^{-0.4}. Low-lying excitation levels of three
isomers are compared using the time-dependent density functional theory in the
Casida approach.Comment: pdf (included all figures):
http://www.phy.hr/~goranka/Research/ocs.pd
Is manganese-doped diamond a ferromagnetic semiconductor?
We use density-functional theoretical methods to examine the recent
prediction, based on a mean-field solution of the Zener model, that diamond
doped by Mn (with spin S=5/2) would be a dilute magnetic semiconductor that
remains ferromagnetic well above room temperature. Our findings suggest this to
be unlikely, for four reasons: (1) substitutional Mn in diamond has a low-spin
S=1/2 ground state; (2) the substitutional site is energetically unfavorable
relative to the much larger "divacancy" site; 3) Mn in the divacancy site is an
acceptor, but with only hyperdeep levels, and hence the holes are likely to
remain localized; (4) the calculated Heisenberg couplings between Mn in nearby
divacancy sites are two orders of magnitude smaller than for substitutional Mn
in germanium.Comment: 5 pages, 5 figure
Proof of the thermodynamical stability of the E' center in SiO2
The E' center is a paradigmatic radiation-induced defect in SiO2 whose
peculiar EPR and hyperfine activity has been known since over 40 years. This
center has been traditionally identified with a distorted, positively-charged
oxygen vacancy V_O+. However, no direct proof of the stability of this defect
has ever been provided, so that its identification is still strongly
incomplete. Here we prove directly that distorted V_O+ is metastable and that
it satisfies the key requirements for its identification as E', such as thermal
and optical response, and activation-deactivation mechanisms.Comment: RevTeX 4 pages, 2 figure
Physics and chemistry of hydrogen in the vacancies of semiconductors
Hydrogen is well known to cause electrical passivation of lattice vacancies in semiconductors. This effect follows from the chemical passivation of the dangling bonds. Recently it was found that H in the carbon vacancy of SiC forms a three-center bond with two silicon neighbors in the vacancy, and gives rise to a new electrically active state. In this paper we examine hydrogen in the anion vacancies of BN, AlN, and GaN. We find that three-center bonding of H is quite common and follows clear trends in terms of the second-neighbor distance in the lattice, the typical (two-center) hydrogen-host-atom bond length, the electronegativity difference between host atoms and hydrogen, as well as the charge state of the vacancy. Three-center bonding limits the number of H atoms a nitrogen vacancy can capture to two, and prevents electric passivation in GaAs as well
Spontaneous magnetization of aluminum nanowires deposited on the NaCl(100) surface
We investigate electronic structures of Al quantum wires, both unsupported
and supported on the (100) NaCl surface, using the density-functional theory.
We confirm that unsupported nanowires, constrained to be linear, show
magnetization when elongated beyond the equilibrium length. Allowing ions to
relax, the wires deform to zig-zag structures with lower magnetization but no
dimerization occurs. When an Al wire is deposited on the NaCl surface, a
zig-zag geometry emerges again. The magnetization changes moderately from that
for the corresponding unsupported wire. We analyse the findings using electron
band structures and simple model wires.Comment: submitted to PHys. Rev.
- …
