154 research outputs found
Monte Carlo studies of the square Ising model with next-nearest-neighbor interactions
We apply a new entropic scheme to study the critical behavior of the
square-lattice Ising model with nearest- and next-nearest-neighbor
antiferromagnetic interactions. Estimates of the present scheme are compared
with those of the Metropolis algorithm. We consider interactions in the range
where superantiferromagnetic (SAF) order appears at low temperatures. A recent
prediction of a first-order transition along a certain range (0.5-1.2) of the
interaction ratio is examined by generating accurate data
for large lattices at a particular value of the ratio . Our study does
not support a first-order transition and a convincing finite-size scaling
analysis of the model is presented, yielding accurate estimates for all
critical exponents for R=1 . The magnetic exponents are found to obey ``weak
universality'' in accordance with a previous conjecture.Comment: 9 pages, 7 figures, Proceedings of the third NEXT Sigma Phi
International Conference, kolymbari, Greece (2005
Universality aspects of the d=3 random-bond Blume-Capel model
The effects of bond randomness on the universality aspects of the simple
cubic lattice ferromagnetic Blume-Capel model are discussed. The system is
studied numerically in both its first- and second-order phase transition
regimes by a comprehensive finite-size scaling analysis. We find that our data
for the second-order phase transition, emerging under random bonds from the
second-order regime of the pure model, are compatible with the universality
class of the 3d random Ising model. Furthermore, we find evidence that, the
second-order transition emerging under bond randomness from the first-order
regime of the pure model, belongs to a new and distinctive universality class.
The first finding reinforces the scenario of a single universality class for
the 3d Ising model with the three well-known types of quenched uncorrelated
disorder (bond randomness, site- and bond-dilution). The second, amounts to a
strong violation of universality principle of critical phenomena. For this case
of the ex-first-order 3d Blume-Capel model, we find sharp differences from the
critical behaviors, emerging under randomness, in the cases of the
ex-first-order transitions of the corresponding weak and strong first-order
transitions in the 3d three-state and four-state Potts models.Comment: 12 pages, 12 figure
Uncovering the secrets of the 2d random-bond Blume-Capel model
The effects of bond randomness on the ground-state structure, phase diagram
and critical behavior of the square lattice ferromagnetic Blume-Capel (BC)
model are discussed. The calculation of ground states at strong disorder and
large values of the crystal field is carried out by mapping the system onto a
network and we search for a minimum cut by a maximum flow method. In finite
temperatures the system is studied by an efficient two-stage Wang-Landau (WL)
method for several values of the crystal field, including both the first- and
second-order phase transition regimes of the pure model. We attempt to explain
the enhancement of ferromagnetic order and we discuss the critical behavior of
the random-bond model. Our results provide evidence for a strong violation of
universality along the second-order phase transition line of the random-bond
version.Comment: 6 LATEX pages, 3 EPS figures, Presented by AM at the symposium
"Trajectories and Friends" in honor of Nihat Berker, MIT, October 200
Scaling and self-averaging in the three-dimensional random-field Ising model
We investigate, by means of extensive Monte Carlo simulations, the magnetic
critical behavior of the three-dimensional bimodal random-field Ising model at
the strong disorder regime. We present results in favor of the two-exponent
scaling scenario, , where and are the
critical exponents describing the power-law decay of the connected and
disconnected correlation functions and we illustrate, using various finite-size
measures and properly defined noise to signal ratios, the strong violation of
self-averaging of the model in the ordered phase.Comment: 8 pages, 6 figures, to be published in Eur. Phys. J.
Abrupt transition in a sandpile model
We present a fixed energy sandpile (FES) model which, by increasing the
initial energy,undergoes, at the level of individual configurations, a
discontinuous transition.The model is obtained by modifying the toppling
procedure in the BTW rules: the energy transfer from a toppling site takes
place only to neighbouring sites with less energy (negative gradient
constraint) and with a time ordering (asynchronous). The model is minimal in
the sense that removing either of the two above mentioned constraints (negative
gradient or time ordering) the abrupt transition goes over to a continuous
transition as in the usual BTW case. Therefore the proposed model offers an
unique possibility to explore at the microscopic level the basic mechanisms
underlying discontinuous transitions.Comment: 7 pages, 5 figure
Multicritical Points and Crossover Mediating the Strong Violation of Universality: Wang-Landau Determinations in the Random-Bond Blume-Capel model
The effects of bond randomness on the phase diagram and critical behavior of
the square lattice ferromagnetic Blume-Capel model are discussed. The system is
studied in both the pure and disordered versions by the same efficient
two-stage Wang-Landau method for many values of the crystal field, restricted
here in the second-order phase transition regime of the pure model. For the
random-bond version several disorder strengths are considered. We present phase
diagram points of both pure and random versions and for a particular disorder
strength we locate the emergence of the enhancement of ferromagnetic order
observed in an earlier study in the ex-first-order regime. The critical
properties of the pure model are contrasted and compared to those of the random
model. Accepting, for the weak random version, the assumption of the double
logarithmic scenario for the specific heat we attempt to estimate the range of
universality between the pure and random-bond models. The behavior of the
strong disorder regime is also discussed and a rather complex and yet not fully
understood behavior is observed. It is pointed out that this complexity is
related to the ground-state structure of the random-bond version.Comment: 12 pages, 11 figures, submitted for publicatio
Wang-Landau study of the 3D Ising model with bond disorder
We implement a two-stage approach of the Wang-Landau algorithm to investigate
the critical properties of the 3D Ising model with quenched bond randomness. In
particular, we consider the case where disorder couples to the nearest-neighbor
ferromagnetic interaction, in terms of a bimodal distribution of strong versus
weak bonds. Our simulations are carried out for large ensembles of disorder
realizations and lattices with linear sizes in the range . We apply
well-established finite-size scaling techniques and concepts from the scaling
theory of disordered systems to describe the nature of the phase transition of
the disordered model, departing gradually from the fixed point of the pure
system. Our analysis (based on the determination of the critical exponents)
shows that the 3D random-bond Ising model belongs to the same universality
class with the site- and bond-dilution models, providing a single universality
class for the 3D Ising model with these three types of quenched uncorrelated
disorder.Comment: 7 pages, 7 figures, to be published in Eur. Phys. J.
Criticality in the randomness-induced second-order phase transition of the triangular Ising antiferromagnet with nearest- and next-nearest-neighbor interactions
Using a Wang-Landau entropic sampling scheme, we investigate the effects of
quenched bond randomness on a particular case of a triangular Ising model with
nearest- () and next-nearest-neighbor () antiferromagnetic
interactions. We consider the case , for which the pure
model is known to have a columnar ground state where rows of nearest-neighbor
spins up and down alternate and undergoes a weak first-order phase transition
from the ordered to the paramagnetic state. With the introduction of quenched
bond randomness we observe the effects signaling the expected conversion of the
first-order phase transition to a second-order phase transition and using the
Lee-Kosterlitz method, we quantitatively verify this conversion. The emerging,
under random bonds, continuous transition shows a strongly saturating specific
heat behavior, corresponding to a negative exponent , and belongs to a
new distinctive universality class with , ,
and . Thus, our results for the critical exponents support
an extensive but weak universality and the emerged continuous transition has
the same magnetic critical exponent (but a different thermal critical exponent)
as a wide variety of two-dimensional (2d) systems without and with quenched
disorder.Comment: 17 pages, 6 figures, accepted for publication in Physica
Structural Properties of Self-Attracting Walks
Self-attracting walks (SATW) with attractive interaction u > 0 display a
swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >=
2, analogous to the \Theta transition of polymers. We are interested in the
structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen
walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can
be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and
their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo
simulations, we find that for u<u_{\mathrm{c}}, the structures are in the
universality class of clusters generated by simple random walks. For
u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and
d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class.
The clusters are compact in both d=2 and d=3, but their interface is fractal:
d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In
d=1, where the walk is collapsed for all u and no swelling-collapse transition
exists, we derive analytical expressions for the average number of visited
sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.
- …
