1,395 research outputs found
A novel topology of high-speed SRM for high-performance traction applications
A novel topology of high-speed Switched Reluctance Machine (SRM) for high-performance traction applications is presented in this article. The target application, a Hybrid Electric Vehicle (HEV) in the sport segment poses very demanding specifications on the power and torque density of the electric traction machine. After evaluating multiple alternatives, the topology proposed is a 2-phase axial flux machine featuring both segmented twin rotors and a segmented stator core. Electromagnetic, thermal and mechanical models of the proposed topology are developed and subsequently integrated in an overall optimisation algorithm in order to find the optimal geometry for the application. Special focus is laid on the thermal management of the machine, due to the tough thermal conditions resulting from the high frequency, high current and highly saturated operation. Some experimental results are also included in order to validate the modelling and simulation results
Big Data:Understanding how Creative Organisations Create and Sustain their Networks
Big data is an evolving term used to describe the variety, volume and velocity of large amounts of structured and unstructured data. It can offer useful insights at both operational and strategic levels, thereby helping organisations to move forward in times of rapid change and uncertainty. However, there are challenges in terms of how best to capture, store and make sense of data. Many cultural arts organisations generate value through the relationships they create and the networks they sustain, but far too often this data is not clearly articulated or evidenced to leverage insight, support and business opportunities. The ArtsAPI project aimed to understand the connections that underpin the ‘relational value’ within the arts sector. The R&D project resulted in the development of a proof of concept business modelling and analytic tool to enable arts organisations to generate new insights through data capture, visualisation and analysis. The numerical/analytical technique of Social Network Analysis (SNA) was used to visually map and analyse network structures and relationships found within and across the extended boundaries of five cultural arts organisations located in the UK. Based on the ‘blue print’ from the SNA research, seven scenario-based insights were generated that offered impact measures for debates around evidencing forms of cultural value. These scenarios were later mapped onto a semantic ontology to create a ‘SNA lite’ web-based tool. In the paper to be reported here, we will set the context and background of the project, briefly describe the research methodology and the outcomes that influenced the development of the ArtsAPI tool
Effective suppression of Dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain
Introduction:
Approximately 100 million confirmed infections and 20,000 deaths are caused by Dengue virus (DENV) outbreaks annually. Global warming and rapid dispersal have resulted in DENV epidemics in formally non-endemic regions. Currently no consistently effective preventive measures for DENV exist, prompting development of transgenic and paratransgenic vector control approaches. Production of transgenic mosquitoes refractory for virus infection and/or transmission is contingent upon defining antiviral genes that have low probability for allowing escape mutations, and are equally effective against multiple serotypes. Previously we demonstrated the effectiveness of an anti-viral group I intron targeting U143 of the DENV genome in mediating trans-splicing and expression of a marker gene with the capsid coding domain. In this report we examine the effectiveness of coupling expression of ΔN Bax to trans-splicing U143 intron activity as a means of suppressing DENV infection of mosquito cells.
Results:
Targeting the conserved DENV circularization sequence (CS) by U143 intron trans-splicing activity appends a 3’ exon RNA encoding ΔN Bax to the capsid coding region of the genomic RNA, resulting in a chimeric protein that induces premature cell death upon infection. TCID50-IFA analyses demonstrate an enhancement of DENV suppression for all DENV serotypes tested over the identical group I intron coupled with the non-apoptotic inducing firefly luciferase as the 3’ exon. These cumulative results confirm the increased effectiveness of this αDENV-U143-ΔN Bax group I intron as a sequence specific antiviral that should be useful for suppression of DENV in transgenic mosquitoes. Annexin V staining, caspase 3 assays, and DNA ladder observations confirm DCA-ΔN Bax fusion protein expression induces apoptotic cell death.
Conclusion:
This report confirms the relative effectiveness of an anti-DENV group I intron coupled to an apoptosis-inducing ΔN Bax 3’ exon that trans-splices conserved sequences of the 5’ CS region of all DENV serotypes and induces apoptotic cell death upon infection. Our results confirm coupling the targeted ribozyme capabilities of the group I intron with the generation of an apoptosis-inducing transcript increases the effectiveness of infection suppression, improving the prospects of this unique approach as a means of inducing transgenic refractoriness in mosquitoes for all serotypes of this important disease
Molecular Dynamics of p21 and Fluorescent Sphingomyelin in Keratinocytes Exposed to UVB
Non-melanoma skin cancer (NMSC) is the most common malignant tumor, representing more than a third of all malignant tumors combined and the incidence is increasing every year. Ultraviolet (UV) radiation from the sun is the most dominant factor contributing to tumor initiation and progression. The condition is most prevalent in populations with lighter skin and older age. Current pharmaceutical molecular research targets the inhibition of the Epidermal Growth Factor Receptor (EGFR), a receptor which is commonly over-expressed or dysregulated in skin malignancies. This study evaluates the content and location of the damage marker p21 within keratinocytes that were incubated in sphingomyelin (SM) and later exposed to UV. Confocal microscopy and automated image processing provided the tools to assess large populations of keratinocytes in the effort to accurately identify the photoprotective qualities of sphingomyelin. Classification of individual cells into subpopulations yielded results suggesting SM may be involved in the inhibition of EGFR, and could potentially be a more naturally derived treatment
Power factor-corrected transformerless three-phase PWM converter for UPS applications
This thesis describes the research of a new transformerless three phase PWM converter
for uninterruptible power supplies (UPS) applications. The removal of the bulky three
phase transformer in larger power UPS can provide a significant saving in weight and
cost of the overall system.
The converter consists of a new four-wire rectifier coupled with a four-wire inverter via
a dc bus. The supply and load neutral may be connected together without any neutral
current flowing into the utility regardless of the load on the inverter. This allows the load
to be at the same potential as the utility.
The rectifier, inverter and complete UPS and control system are described in detail and
simulation results are used extensively to back up the theory. An experimental prototype
of the four-wire rectifier provides further confirmation of the principles.
A further proposal to digitize the system is given. This would reduce the size of the
required control circuit and simplify the hardware requirements
Britain and Europe: A new settlement? EPC Challenge Europe 23, May 2016
Britain's European problem, Stephen Wall; Britain's contribution to the EU: an insider's view, David Hannay;
'Foreign judges' and the law of the European Union, David Edward; The United Kingdom and the Charter of Fundamental Rights of the EU, Peter Goldsmith; European foreign policy: five and a half stories, Robert Cooper;
External relations and the transformative power of enlargement, Heather Grabbe; Recalibrating British European policy in foreign affairs, Fraser Cameron;
The European Union and the wider Europe, Graham Avery;
From Common Market to Single Market: an unremarked success, Malcolm Harbour; Lost in translation: Britain, Germany and the euro, Quentin Peel; After Cameron's EU deal, Kirsty Hughes; Re-imagining the European Union,
Caroline Lucas; Britain and European federalism, Brendan Donnelly; Europe's British problem, Andrew Duff
Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni
Copyright @ 2014 Arican-Goktas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.NIH and Sandler Borroughs Wellcome Travel Fellowshi
Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi
<b>Background:</b> Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures.
<BR/>
<b>Methods:</b> Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters.
<BR/>
<b>Results:</b> Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting.
<BR/>
<b>Conclusions:</b> The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum
Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants
Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed
Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record
The Indus River is the only major drainage in the western Himalaya and delivers a long geological record of continental erosion to the Arabian Sea, which may be deciphered and used to reconstruct orogenic growth if the modern bedload can be related to the mountains. In this study we collected thermochronologic data from river sediment collected near the modern delta. U-Pb ages of zircons spanning 3 Gyr show that only ∼5% of the eroding crust has been generated since India-Asia collision. The Greater Himalaya are the major source of zircons, with additional contributions from the Karakoram and Lesser Himalaya. The 39Ar/40Ar dating of muscovites gives ages that cluster between 10 and 25 Ma, differing from those recorded in the Bengal Fan. Biotite ages are generally younger, ranging 0–15 Ma. Modern average exhumation rates are estimated at ∼0.6 km/m.y. or less, and have slowed progressively since the early Miocene (∼20 Ma), although fission track (FT) dating of apatites may indicate a recent moderate acceleration in rates since the Pliocene (∼1.0 km/m.y.) driven by climate change. The 39Ar/40Ar and FT techniques emphasize the dominance of high topography in controlling the erosional flux to the ocean. Localized regions of tectonically driven, very rapid exhumation (e.g., Nanga Parbat, S. Karakoram metamorphic domes) do not dominate the erosional record
- …
