274 research outputs found

    An iron(ii) spin-crossover metallacycle from a back-to-back bis-[dipyrazolylpyridine]

    Get PDF
    The syntheses of 4-mercapto-2,6-di(pyrazol-1-yl)pyridine (bppSH) and bis[2,6-di(pyrazol-1-yl)pyrid-4-yl]disulfide (bppSSbpp) are reported. In contrast to previously published “back-to-back” bis-[2,6-di(pyrazol-1-yl)pyridine] derivatives, which form coordination polymers with transition ions that are usually insoluble, bppSSbpp yields soluble oligomeric complexes with iron(II) and zinc(II). Mass spectrometry and DOSY data show that [{Fe(μ-bppSSbpp)}n]2n+ and [{Zn(μ-bppSSbpp)}n]2n+ form tetranuclear metallacycles in nitromethane solution (n = 4), although 1H NMR and conductivity measurements imply the iron compound may undergo more fragmentation than its zinc congener. Both [{Fe(bppSH)2]2+ and [{Fe(μ-bppSSbpp)}n]2n+ exhibit thermal spin-crossover in CD3NO2 solution, with midpoint temperatures near 245 K. The similarity of these equilibria implies there is little cooperativity between the iron centres in the metallacyclic structures

    Studies on transition metal polythia macrocyclic complexes

    Get PDF

    Structures and Spin States of Crystalline [Fe(NCS)2L2] and [FeL3]2+ Complexes (L = an Annelated 1,10-Phenanthroline Derivative)

    Get PDF
    The phase behaviour and spin states of [Fe(NCS)2(dpq)2] (1; dpq = dipyrido[3,2-f:2′,3′-h]quinoxaline), [Fe(NCS)2(dppz)2] (2; dppz = dipyrido[3,2-a:2′3′-c]phenazine) and [Fe(NCS)2(dppn)2] (3; dppn = dipyrido[3,2-a:2′3′-c]benzophenazine) have been investigated. Solvent-free 1 and 2 are isostructural and low-spin in the crystalline state, in contrast to previously published 2·py (py = pyridine) which exhibits a hysteretic spin-crossover (SCO) transition near 140 K. The inactivity of 1 and 2 towards SCO may relate to their more crowded intermolecular lattice environment, particularly two very short intermolecular anion⋯π contacts involving the NCS− ligands. Two solvate phases of 1 are also described, including 1·2py which undergoes gradual SCO with T½ca. 188 K. Bulk samples of 2 and 3 are predominantly low-spin and isostructural with the crystals of 2 by powder diffraction, but bulk samples of 1 contain an extra phase that exhibits hysteretic SCO, but was not crystallographically characterised. Crystal structures of low-spin [Fe(dppz)3][ClO4]2 (4) and a solvate of [Fe(dppn)3][BF4]2 (5) are also described, which are the first homoleptic complexes of these ligands to be crystallographically characterised

    Data to support study of Iron(II) Complexes of 2,4-Dipyrazolyl-1,3,5-Triazine Derivatives ‒ the Influence of Ligand Geometry on Metal Ion Spin State

    Get PDF
    Seven derivatives of [FeL2]2+ (L = 2,4-di{pyrazol-1-yl}-1,3,5-triazine) are all high-spin. DFT calculations imply this can be attributed to the geometry of the L ligand

    The First New Zealanders: Patterns of Diet and Mobility Revealed through Isotope Analysis

    No full text
    Direct evidence of the environmental impact of human colonization and subsequent human adaptational responses to new environments is extremely rare anywhere in the world. New Zealand was the last Polynesian island group to be settled by humans, who arrived around the end of the 13th century AD. Little is known about the nature of human adaptation and mobility during the initial phase of colonization. We report the results of the isotopic analysis (carbon, nitrogen and strontium) of the oldest prehistoric skeletons discovered in New Zealand to assess diet and migration patterns. The isotope data show that the culturally distinctive burials, Group 1, had similar diets and childhood origins, supporting the assertion that this group was distinct from Group 2/3 and may have been part of the initial colonizing population at the site. The Group 2/3 individuals displayed highly variable diets and likely lived in different regions of the country before their burial at Wairau Bar, supporting the archaeological evidence that people were highly mobile in New Zealand since the initial phase of human settlement.: University of Otago Research Grant (http://www.otago.ac.nz/research/otago004140.html); A grant-in-aid by the School of Medical Sciences, University of Otago (http://osms.otago.ac.nz/); The Mason Foundation (http://research-hub.griffith.edu.au/display/fosc_MASONG); Royal Society of New Zealand Marsden Fund (http://www.royalsociety.org.nz/programmes/funds/marsden/) grant number UOO0711. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Data to Support Iron(II) Complexes of 2,6-Bis(imidazo[1,2?a]pyridin-2-yl)pyridine and Related Ligands with Annelated Distal Heterocyclic Donors

    Get PDF
    Complexes of the title ligand and two of its derivatives are mostly high-spin in the solid state, but exhibit thermal spin-crossover equilibria in solution with a ligand-centred room-temperature emission

    Highly Porous Hydrogen-Bond Networks from a Triptycene-Based Catechol

    Get PDF
    Solvate crystals of 9,10-dimethyl-2,3,6,7,14,15-hexa(hydroxy)-triptycene (1) form a variety of 3D hydrogen-bonded topologies, including bcu, acs, bsn and an apparently new 7-connected net. Several of these networks contain 1D or 2D arrays of solvent-filled channels, amounting to up to 60% solvent-accessible void space

    Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound

    Get PDF
    This is a repository copy of Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/83008/ Version: Accepted Version Article: Elhaïk, J, Kilner, C and Halcrow, MA (2014) Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound. European Journal of Inorganic Chemistry, 2014 (26). 4250 -4253. ISSN 14344250 -4253. ISSN -1948 https://doi.org/10.1002/ejic.201402623 [email protected] https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. Insight into Compound Jérôme Elhaïk, [a] Colin A. Kilner, [a] and Malcolm A. Halcrow* [a] Abstract: The ClO4 − salt of [FeL2] 2+ (L = 2,6-bis(3-methylpyrazol-1-yl)pyridine) undergoes very gradual thermal spin-crossover centered just below room temperature. In contrast, the BF4 − salt of the same complex exhibits an abrupt and structured spin-transition at lower temperature, with a complicated structural chemistry. The difference can be attributed to a much larger change in molecular structure between the spin states of the complex in the more cooperative BF4 − salt, leading to an increased kinetic barrier for their interconversion. Consistent with that suggestion, the high-spin and low-spin structures of weakly cooperative [FeL2][ClO4]2 are almost superimposable. The continuing interest in thermally and optically switchable spin-crossover (SCO) materials [9] Its thermal spin-transition takes place in two steps, via a re-entrant symmetry-breaking transition to an intermediate crystal phase, with a tripled unit cell containing a mixture of high-spin and low-spin sites. The first of these steps occurs abruptly with hysteresis, but at a temperature that varies according to the water content of the sample (x). In contrast the second step is kinetically slow, and is only achieved when the sample is poised at 100 K for 1.5 hrs. [10] Its excited spin-state trapping (LIESST [11] ) behavior is also unique, in that its thermodynamic high low spin transition and kinetically controlled high low spin-state relaxation exhibit different profiles and are effectively decoupled from each other. [12] Although unexceptional in itself, 1[ClO4]2 provides useful insight into the structural origin of the unusual behavior of the BF4 − salt by providing a rare comparison between strongly and weakly cooperative spin-crossover materials based on the same complex molecule. At 300 K, MT for 1[ClO4]2 is 2.4 cm 3 mol -1 K, lower than expected for a high-spin iron(II) complex with this ligand type (3.4-3.6 cm 3 mol -1 K)

    Data to support study of Influence of Ligand Substituent Conformation on the Spin State of an Iron(II)/Di(pyrazol-1-yl)pyridine Complex

    Get PDF
    The solution-phase spin-crossover temperature in iron(II)/4-alkylsulfanyl-2,6-di{pyrazol-1-yl}pyridine complexes is influenced by the conformation of the SMe, SiPr or StBu alkylsulfanyl substituents
    corecore