397 research outputs found
Service Use, Drop-Out Rate and Clinical Outcomes:A Comparison Between High and Low Intensity Treatments in an IAPT Service
Background: The IAPT services provide high and low intensity psychological treatments for adults suffering from depression and anxiety disorders using a stepped care model. The latest national evaluation study reported an average recovery rate of 42%. However, this figure varied widely between services, with better outcomes associated with higher "step-up" rates between low and high intensity treatments. Aims: This study aimed to compare the two intensity groups in an IAPT service in Suffolk. Method: This study adopted a between groups design. A sample of 100 service users was randomly selected from the data collected from an IAPT service in Suffolk between May 2008 and February 2011. The treatment outcomes, drop-out rate, and other characteristics were compared between those who received high and low intensity treatments. Results: The high intensity group received, on average, more sessions and contact time. They received more CBT sessions and less guided self-help. There were no group differences in terms of the drop-out and appointment cancellation rates. Analyses on clinical outcomes suggested no group difference but demonstrated an overall recovery rate of 52.6% and significant reduction in both depression and anxiety symptoms. Conclusions: Despite methodological limitations, this study concludes that the service as a whole achieved above-average clinical outcomes. Further research building upon the current study in unpacking the relative strengths and weaknesses for the high and low intensity treatments would be beneficial for service delivery
Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism
Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues
Hubble Residuals of Nearby Type Ia Supernovae Are Correlated with Host Galaxy Masses
From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar
masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from
the hosts' absolute luminosities and mass-to-light ratios. These nearby SN were
discovered largely by searches targeting luminous galaxies, and we find that
their host galaxies are substantially more massive than the hosts of SN
discovered by the flux-limited Supernova Legacy Survey. Testing four separate
light curve fitters, we detect ~2.5{\sigma} correlations of Hubble residuals
with both host galaxy size and stellar mass, such that SN Ia occurring in
physically larger, more massive hosts are ~10% brighter after light curve
correction. The Hubble residual is the deviation of the inferred distance
modulus to the SN, calculated from its apparent luminosity and light curve
properties, away from the expected value at the SN redshift. Marginalizing over
linear trends in Hubble residuals with light curve parameters shows that the
correlations cannot be attributed to a light curve-dependent calibration error.
Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN
whose host masses are less than 10^10.8 solar masses in a cosmology fit yields
1+w=0.22 +0.152/-0.143, while a combination where the 30 nearby SN instead have
host masses greater than 10^10.8 solar masses yields 1+w=-0.03 +0.217/-0.108.
Progenitor metallicity, stellar population age, and dust extinction correlate
with galaxy mass and may be responsible for these systematic effects. Host
galaxy measurements will yield improved distances to SN Ia.Comment: 16 pages, 6 figures, published in ApJ, minor change
The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin.
Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite
Near-Ultraviolet Properties of a Large Sample of Type Ia Supernovae as Observed with the Swift UVOT
We present ultraviolet (UV) and optical photometry of 26 Type Ia supernovae
(SNe~Ia) observed from March 2005 to March 2008 with the NASA {\it Swift}
Ultraviolet and Optical Telescope (UVOT). The dataset consists of 2133
individual observations, making it by far the most complete study of the UV
emission from SNe~Ia to date. Grouping the SNe into three subclasses as derived
from optical observations, we investigate the evolution of the colors of these
SNe, finding a high degree of homogeneity within the normal subclass, but
dramatic differences between that group and the subluminous and SN 2002cx-like
groups. For the normal events, the redder UV filters on UVOT (, ) show
more homogeneity than do the bluer UV filters (, ). Searching for
purely UV characteristics to determine existing optically based groupings, we
find the peak width to be a poor discriminant, but we do see a variation in the
time delay between peak emission and the late, flat phase of the light curves.
The UV light curves peak a few days before the band for most subclasses (as
was previously reported by Jha et al. 2006a), although the SN 2002cx-like
objects peak at a very early epoch in the UV. That group also features the
bluest emission observed among SNe~Ia. As the observational campaign is
ongoing, we discuss the critical times to observe, as determined by this study,
in order to maximize the scientific output of future observations.Comment: Accepted to Astrophysical Journa
Pixel Entanglement: Experimental Realization of Optically Entangled D=3 and D=6 Qudits
We demonstrate a simple experimental method for creating entangled qudits. Using transverse-momentum and position entanglement of photons emitted in spontaneous parametric down-conversion, we show entanglement between discrete regions of space, i.e., pixels. We map each photon onto as many as six pixels, where each pixel represents one level of our qudit state. The method is easily generalizable to create even higher dimensional, entangled states. Thus, the realization of quantum information processing in arbitrarily high dimensions is possible, allowing for greatly increased information capacity
Year-around C- and L-band observation around the MOSAiC ice floe with high spatial and temporal resolution
In September 2019, the German research icebreaker Polarstern started the largest multidisciplinary Arctic expedition, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to ice floes at high Arctic for a whole year, thus including the winter season, the main goal of the expedition is to better understand and quantify relevant processes within the atmosphere-ice-ocean system that impact the sea ice, ultimately leading to improved climate models. Satellite remote sensing, specially multi-frequency synthetic aperture radar (SAR) plays a major role to achieve this goal. Two major objectives in SAR based remote sensing of sea ice is on the one hand to have a large coverage, and on the other hand to obtain a radar response that carries as much information as possible. A comprehensive set of C- and L- band SAR images were acquired during the course of MOSAiC. In this initial study we evaluate the effects of seasonal changes on C- and L-band backscatter in respect to three different sea ice types, i.e., Young Ice, Smooth Ice and Rough/Deformed Ice along with the performance of sea ice type retrieval of a established algorithm. Areas of deformed, smooth and young sea ice were observed in the vicinity of R/V Polarstern and these areas are included whenever possible in the yearlong time series. For both frequencies a change in all backscatter channels values can be observed during the early melt season. This is first noticeable in the C-band images and later followed by a change in the L-band images, probably caused by their different penetration depth and volume scattering sensitivities
First-Year Spectroscopy for the SDSS-II Supernova Survey
This paper presents spectroscopy of supernovae discovered in the first season
of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for
and measures multi-band light curves of supernovae in the redshift range z =
0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our
goal is to better characterize the supernova population, with a particular
focus on SNe Ia, improving their utility as cosmological distance indicators
and as probes of dark energy. Our supernova spectroscopy program features
rapid-response observations using telescopes of a range of apertures, and
provides confirmation of the supernova and host-galaxy types as well as precise
redshifts. We describe here the target identification and prioritization, data
reduction, redshift measurement, and classification of 129 SNe Ia, 16
spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first
season. We also describe our efforts to measure and remove the substantial host
galaxy contamination existing in the majority of our SN spectra.Comment: Accepted for publication in The Astronomical Journal(47pages, 9
figures
Extension of Earth-Moon libration point orbits with solar sail propulsion
This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun’s motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits
The 3D Facies Architecture and Petrophysical Properties of Hyaloclastite Delta Deposits : An Integrated Photogrammetry and Petrophysical Study from southern Iceland
ACKNOWLEDGEMENTS Dougal Jerram is partly funded through a Norwegian Research Council Centres of Excellence project (project number 223272, CEED). Adam Soule, Kirstie Wright and an anonymous reviewer are thanked for their extensive comments which helped to improve the final manuscript. We thank Cynthia Ebinger for clear editorial guidance and handing of the manuscript.Peer reviewedPostprin
- …
