363 research outputs found
Momentum transfer using chirped standing wave fields: Bragg scattering
We consider momentum transfer using frequency-chirped standing wave fields.
Novel atom-beam splitter and mirror schemes based on Bragg scattering are
presented. It is shown that a predetermined number of photon momenta can be
transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure
Anharmonicity, vibrational instability and Boson peak in glasses
We show that a {\em vibrational instability} of the spectrum of weakly
interacting quasi-local harmonic modes creates the maximum in the inelastic
scattering intensity in glasses, the Boson peak. The instability, limited by
anharmonicity, causes a complete reconstruction of the vibrational density of
states (DOS) below some frequency , proportional to the strength of
interaction. The DOS of the new {\em harmonic modes} is independent of the
actual value of the anharmonicity. It is a universal function of frequency
depending on a single parameter -- the Boson peak frequency, which
is a function of interaction strength. The excess of the DOS over the Debye
value is at low frequencies and linear in in the
interval . Our results are in an excellent
agreement with recent experimental studies.Comment: LaTeX, 8 pages, 6 figure
Electronic structure of nuclear-spin-polarization-induced quantum dots
We study a system in which electrons in a two-dimensional electron gas are
confined by a nonhomogeneous nuclear spin polarization. The system consists of
a heterostructure that has non-zero nuclei spins. We show that in this system
electrons can be confined into a dot region through a local nuclear spin
polarization. The nuclear-spin-polarization-induced quantum dot has interesting
properties indicating that electron energy levels are time-dependent because of
the nuclear spin relaxation and diffusion processes. Electron confining
potential is a solution of diffusion equation with relaxation. Experimental
investigations of the time-dependence of electron energy levels will result in
more information about nuclear spin interactions in solids
Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data
We present the cosmological parameters constraints obtained from the
combination of galaxy cluster mass function measurements (Vikhlinin et al.,
2009a,b) with new cosmological data obtained during last three years: updated
measurements of cosmic microwave background anisotropy with Wilkinson Microwave
Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South
Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic
oscillations and supernovae Type Ia observations.
New constraints on total neutrino mass and effective number of neutrino
species are obtained. In models with free number of massive neutrinos the
constraints on these parameters are notably less strong, and all considered
cosmological data are consistent with non-zero total neutrino mass \Sigma m_\nu
\approx 0.4 eV and larger than standard effective number of neutrino species,
N_eff \approx 4. These constraints are compared to the results of neutrino
oscillations searches at short baselines.
The updated dark energy equation of state parameters constraints are
presented. We show that taking in account systematic uncertainties, current
cluster mass function data provide similarly powerful constraints on dark
energy equation of state, as compared to the constraints from supernovae Type
Ia observations.Comment: Accepted for publication in Astronomy Letter
EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)
We analyze EUV spectra of the full solar disk from the Cosmic Hot
Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The
observations were obtained via a fortuitous off-axis light path in the 140 --
270 Angstrom passband. The general appearance of the spectra remained
relatively stable over the two-year time period, but did show significant
variations of up to 25% between two sets of Fe lines that show peak emission at
1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are
caused by regions of hotter and cooler plasma rotating into, and out of, the
field of view. The CHIANTI spectral code is employed to determine plasma
temperatures, densities, and emission measures. A set of five isothermal
plasmas fit the full disk spectra well. A 1 -- 2 MK plasma of Fe contributes
85% of the total emission in the CHIPS passband. The standard Differential
Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS
spectra well as they over-predict emission at temperatures below log(T) = 6.0
and above log(T) = 6.3. The results are important for cross-calibrating TIMED,
SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics
Observatory.Comment: 27 Pages, 13 Figure
Adiabatic population transfer via multiple intermediate states
This paper discusses a generalization of stimulated Raman adiabatic passage
(STIRAP) in which the single intermediate state is replaced by intermediate
states. Each of these states is connected to the initial state \state{i} with
a coupling proportional to the pump pulse and to the final state \state{f}
with a coupling proportional to the Stokes pulse, thus forming a parallel
multi- system. It is shown that the dark (trapped) state exists only
when the ratio between each pump coupling and the respective Stokes coupling is
the same for all intermediate states. We derive the conditions for existence of
a more general adiabatic-transfer state which includes transient contributions
from the intermediate states but still transfers the population from state
\state{i} to state \state{f} in the adiabatic limit. We present various
numerical examples for success and failure of multi- STIRAP which
illustrate the analytic predictions. Our results suggest that in the general
case of arbitrary couplings, it is most appropriate to tune the pump and Stokes
lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure
TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova
Electrons and electron neutrinos in the inner core of the core-collapse
supernova are highly degenerate and therefore numerous during a few seconds of
explosion. In contrast, leptons of other flavors are non-degenerate and
therefore relatively scarce. This is due to lepton flavor conservation. If this
conservation law is broken by some non-standard interactions, electron
neutrinos are converted to muon and tau-neutrinos, and electrons - to muons.
This affects the supernova dynamics and the supernova neutrino signal. We
consider lepton flavor violating interactions mediated by scalar bileptons,
i.e. heavy scalars with lepton number 2. It is shown that in case of TeV-mass
bileptons the electron fermi gas is equilibrated with non-electron species
inside the inner supernova core at a time-scale of order of (1-100) ms. In
particular, a scalar triplet which generates neutrino masses through the
see-saw type II mechanism is considered. It is found that supernova core is
sensitive to yet unprobed values of masses and couplings of the triplet.Comment: accepted to Eur.Phys.J.
Modeling the Young Sun's Solar Wind and its Interaction with Earth's Paleomagnetosphere
We present a focused parameter study of solar wind - magnetosphere
interaction for the young Sun and Earth, Ga ago, that relies on
magnetohydrodynamic (MHD) simulations for both the solar wind and the
magnetosphere. By simulating the quiescent young Sun and its wind we are able
to propagate the MHD simulations up to Earth's magnetosphere and obtain a
physically realistic solar forcing of it. We assess how sensitive the young
solar wind is to changes in the coronal base density, sunspot placement and
magnetic field strength, dipole magnetic field strength and the Sun's rotation
period. From this analysis we obtain a range of plausible solar wind conditions
the paleomagnetosphere may have been subject to. Scaling relationships from the
literature suggest that a young Sun would have had a mass flux different from
the present Sun. We evaluate how the mass flux changes with the aforementioned
factors and determine the importance of this and several other key solar and
magnetospheric variables with respect to their impact on the
paleomagnetosphere. We vary the solar wind speed, density, interplanetary
magnetic field strength and orientation as well as Earth's dipole magnetic
field strength and tilt in a number of steady-state scenarios that are
representative of young Sun-Earth interaction. This study is done as a first
step of a more comprehensive effort towards understanding the implications of
Sun-Earth interaction for planetary atmospheric evolution.Comment: 16 pages, 7 figure
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
- …
