7,012 research outputs found
Advanced characterization and simulation of SONNE: a fast neutron spectrometer for Solar Probe Plus
SONNE, the SOlar NeutroN Experiment proposed for Solar Probe Plus, is designed to measure solar neutrons from 1-20 MeV and solar gammas from 0.5-10 MeV. SONNE is a double scatter instrument that employs imaging to maximize its signal-to-noise ratio by rejecting neutral particles from non-solar directions. Under the assumption of quiescent or episodic small-flare activity, one can constrain the energy content and power dissipation by fast ions in the low corona. Although the spectrum of protons and ions produced by nanoflaring activity is unknown, we estimate the signal in neutrons and γ−rays that would be present within thirty solar radii, constrained by earlier measurements at 1 AU. Laboratory results and simulations will be presented illustrating the instrument sensitivity and resolving power
Design optimization and performance capabilities of the fast neutron imaging telescope (FNIT)
We describe the design optimization process and performance characterization of a next generation neutron telescope, with imaging and energy measurement capabilities, sensitive to neutrons in the 1-20 MeV energy range. The response of the Fast Neutron Imaging Telescope (FNIT), its efficiency in neutron detection, energy resolution and imaging capabilities were characterized through a combination of lab tests and Monte Carlo simulations. Monte Carlo simulations, together with experimental data, are also being used in the development and testing of the image reconstruction algorithm. FNIT was initially conceived to study solar neutrons as a candidate instrument for the Inner Heliosphere Sentinel (IHS) spacecraft. However, the design of this detector was eventually adapted to locate Special Nuclear Material (SNM) sources for homeland security purposes, by detecting fission neutrons. In either case, the detection principle is based on multiple elastic neutron-proton scatterings in organic scintillator. By reconstructing event locations and measuring the recoil proton energies, the direction and energy spectrum of the primary neutron flux can be determined and neutron sources identified. This paper presents the most recent results arising from our efforts and outlines the performance of the FNIT detector
Enhanced electrical resistivity before N\'eel order in the metals, RCuAs (R= Sm, Gd, Tb and Dy
We report an unusual temperature (T) dependent electrical resistivity()
behavior in a class of ternary intermetallic compounds of the type RCuAs
(R= Rare-earths). For some rare-earths (Sm, Gd, Tb and Dy) with negligible
4f-hybridization, there is a pronounced minimum in (T) far above
respective N\'eel temperatures (T). However, for the rare-earths which are
more prone to exhibit such a (T) minimum due to 4f-covalent mixing and
the Kondo effect, this minimum is depressed. These findings, difficult to
explain within the hither-to-known concepts, present an interesting scenario in
magnetism.Comment: Physical Review Letters (accepted for publication
The Presampler for the Forward and Rear Calorimeter in the ZEUS Detector
The ZEUS detector at HERA has been supplemented with a presampler detector in
front of the forward and rear calorimeters. It consists of a segmented
scintillator array read out with wavelength-shifting fibers. We discuss its
desi gn, construction and performance. Test beam data obtained with a prototype
presampler and the ZEUS prototype calorimeter demonstrate the main function of
this detector, i.e. the correction for the energy lost by an electron
interacting in inactive material in front of the calorimeter.Comment: 20 pages including 16 figure
Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories
Modern computing systems are embracing hybrid memory comprising of DRAM and
non-volatile memory (NVM) to combine the best properties of both memory
technologies, achieving low latency, high reliability, and high density. A
prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access
latency much higher than DRAM access latency. We call this inter-memory
asymmetry. We observe that parasitic components on a long bitline are a major
source of high latency in both DRAM and NVM, and a significant factor
contributing to high-voltage operations in NVM, which impact their reliability.
We propose an architectural change, where each long bitline in DRAM and NVM is
split into two segments by an isolation transistor. One segment can be accessed
with lower latency and operating voltage than the other. By introducing tiers,
we enable non-uniform accesses within each memory type (which we call
intra-memory asymmetry), leading to performance and reliability trade-offs in
DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we
exploit both inter- and intra-memory asymmetries to allocate and migrate memory
pages between the tiers in DRAM and NVM. Second, we improve the OS's page
allocation decisions by predicting the access intensity of a newly-referenced
memory page in a program and placing it to a matching tier during its initial
allocation. This minimizes page migrations during program execution, lowering
the performance overhead. Third, we propose a solution to migrate pages between
the tiers of the same memory without transferring data over the memory channel,
minimizing channel occupancy and improving performance. Our overall approach,
which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid
tiered memory improves both performance and reliability for both single-core
and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium
on Memory Managemen
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons
We present improved measurements of CP-violation parameters in the decays
, , and , and of
the branching fractions for and . The
results are obtained with the full data set collected at the
resonance by the BABAR experiment at the PEP-II asymmetric-energy factory
at the SLAC National Accelerator Laboratory, corresponding to
million pairs. We find the CP-violation parameter values and
branching fractions where in each case, the first uncertainties are statistical
and the second are systematic. We observe CP violation with a significance of
6.7 standard deviations for and 6.1 standard deviations for
, including systematic uncertainties. Constraints on the
Unitarity Triangle angle are determined from the isospin relations
among the rates and asymmetries. Considering only the solution
preferred by the Standard Model, we find to be in the range
at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.
- …
