21 research outputs found

    Dynamics of Spin Relaxation near the Edge of Two-Dimensional Electron Gas

    Full text link
    We report calculations of spin relaxation dynamics of two-dimensional electron gas with spin-orbit interaction at the edge region. It is found that the relaxation of spin polarization near the edge is more slow than relaxation in the bulk. That results finally in the spin accumulation at the edge. Time dependence of spin polarization density is calculated analytically and numerically. The mechanism of slower spin relaxation near the edge is related to electrons reflections from the boundary and the lack of the translation symmetry. These reflections partially compensate electron spin precession generated by spin-orbit interaction, consequently making the spin polarization near the edge long living. This effect is accompanied by spin polarization oscillations and spin polarization transfer from the perpendicular to in-plane component

    Spin Injection in Quantum Wells with Spatially Dependent Rashba Interaction

    Get PDF
    We consider Rashba spin-orbit effects on spin transport driven by an electric field in semiconductor quantum wells. We derive spin diffusion equations that are valid when the mean free path and the Rashba spin-orbit interaction vary on length scales larger than the mean free path in the weak spin-orbit coupling limit. From these general diffusion equations, we derive boundary conditions between regions of different spin-orbit couplings. We show that spin injection is feasible when the electric field is perpendicular to the boundary between two regions. When the electric field is parallel to the boundary, spin injection only occurs when the mean free path changes within the boundary, in agreement with the recent work by Tserkovnyak et al. [cond-mat/0610190].Comment: 7 pages, 1 figur

    Spin relaxation dynamics of quasiclassical electrons in ballistic quantum dots with strong spin-orbit coupling

    Full text link
    We performed path integral simulations of spin evolution controlled by the Rashba spin-orbit interaction in the semiclassical regime for chaotic and regular quantum dots. The spin polarization dynamics have been found to be strikingly different from the D'yakonov-Perel' (DP) spin relaxation in bulk systems. Also an important distinction have been found between long time spin evolutions in classically chaotic and regular systems. In the former case the spin polarization relaxes to zero within relaxation time much larger than the DP relaxation, while in the latter case it evolves to a time independent residual value. The quantum mechanical analysis of the spin evolution based on the exact solution of the Schroedinger equation with Rashba SOI has confirmed the results of the classical simulations for the circular dot, which is expected to be valid in general regular systems. In contrast, the spin relaxation down to zero in chaotic dots contradicts to what have to be expected from quantum mechanics. This signals on importance at long time of the mesoscopic echo effect missed in the semiclassical simulations.Comment: 14 pages, 9 figure

    Single-photon tunneling

    Full text link
    Strong evidence of a single-photon tunneling effect, a direct analog of single-electron tunneling, has been obtained in the measurements of light tunneling through individual subwavelength pinholes in a thick gold film covered with a layer of polydiacetylene. The transmission of some pinholes reached saturation because of the optical nonlinearity of polydiacetylene at a very low light intensity of a few thousands photons per second. This result is explained theoretically in terms of "photon blockade", similar to the Coulomb blockade phenomenon observed in single-electron tunneling experiments. The single-photon tunneling effect may find many applications in the emerging fields of quantum communication and information processing.Comment: 4 pages, 4figure

    Statistical significance of fine structure in the frequency spectrum of Aharonov-Bohm conductance oscillations

    Get PDF
    We discuss a statistical analysis of Aharonov-Bohm conductance oscillations measured in a two-dimensional ring, in the presence of Rashba spin-orbit interaction. Measurements performed at different values of gate voltage are used to calculate the ensemble-averaged modulus of the Fourier spectrum and, at each frequency, the standard deviation associated to the average. This allows us to prove the statistical significance of a splitting that we observe in the h/e peak of the averaged spectrum. Our work illustrates in detail the role of sample specific effects on the frequency spectrum of Aharonov-Bohm conductance oscillations and it demonstrates how fine structures of a different physical origin can be discriminated from sample specific features.Comment: accepted for publication in PR

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is \approx 104^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998

    Nonlinear optics of metal surface

    No full text
    corecore