21 research outputs found
Dynamics of Spin Relaxation near the Edge of Two-Dimensional Electron Gas
We report calculations of spin relaxation dynamics of two-dimensional
electron gas with spin-orbit interaction at the edge region. It is found that
the relaxation of spin polarization near the edge is more slow than relaxation
in the bulk. That results finally in the spin accumulation at the edge. Time
dependence of spin polarization density is calculated analytically and
numerically. The mechanism of slower spin relaxation near the edge is related
to electrons reflections from the boundary and the lack of the translation
symmetry. These reflections partially compensate electron spin precession
generated by spin-orbit interaction, consequently making the spin polarization
near the edge long living. This effect is accompanied by spin polarization
oscillations and spin polarization transfer from the perpendicular to in-plane
component
Spin Injection in Quantum Wells with Spatially Dependent Rashba Interaction
We consider Rashba spin-orbit effects on spin transport driven by an electric
field in semiconductor quantum wells. We derive spin diffusion equations that
are valid when the mean free path and the Rashba spin-orbit interaction vary on
length scales larger than the mean free path in the weak spin-orbit coupling
limit. From these general diffusion equations, we derive boundary conditions
between regions of different spin-orbit couplings. We show that spin injection
is feasible when the electric field is perpendicular to the boundary between
two regions. When the electric field is parallel to the boundary, spin
injection only occurs when the mean free path changes within the boundary, in
agreement with the recent work by Tserkovnyak et al. [cond-mat/0610190].Comment: 7 pages, 1 figur
Spin relaxation dynamics of quasiclassical electrons in ballistic quantum dots with strong spin-orbit coupling
We performed path integral simulations of spin evolution controlled by the
Rashba spin-orbit interaction in the semiclassical regime for chaotic and
regular quantum dots. The spin polarization dynamics have been found to be
strikingly different from the D'yakonov-Perel' (DP) spin relaxation in bulk
systems. Also an important distinction have been found between long time spin
evolutions in classically chaotic and regular systems. In the former case the
spin polarization relaxes to zero within relaxation time much larger than the
DP relaxation, while in the latter case it evolves to a time independent
residual value. The quantum mechanical analysis of the spin evolution based on
the exact solution of the Schroedinger equation with Rashba SOI has confirmed
the results of the classical simulations for the circular dot, which is
expected to be valid in general regular systems. In contrast, the spin
relaxation down to zero in chaotic dots contradicts to what have to be expected
from quantum mechanics. This signals on importance at long time of the
mesoscopic echo effect missed in the semiclassical simulations.Comment: 14 pages, 9 figure
Single-photon tunneling
Strong evidence of a single-photon tunneling effect, a direct analog of
single-electron tunneling, has been obtained in the measurements of light
tunneling through individual subwavelength pinholes in a thick gold film
covered with a layer of polydiacetylene. The transmission of some pinholes
reached saturation because of the optical nonlinearity of polydiacetylene at a
very low light intensity of a few thousands photons per second. This result is
explained theoretically in terms of "photon blockade", similar to the Coulomb
blockade phenomenon observed in single-electron tunneling experiments. The
single-photon tunneling effect may find many applications in the emerging
fields of quantum communication and information processing.Comment: 4 pages, 4figure
Statistical significance of fine structure in the frequency spectrum of Aharonov-Bohm conductance oscillations
We discuss a statistical analysis of Aharonov-Bohm conductance oscillations
measured in a two-dimensional ring, in the presence of Rashba spin-orbit
interaction. Measurements performed at different values of gate voltage are
used to calculate the ensemble-averaged modulus of the Fourier spectrum and, at
each frequency, the standard deviation associated to the average. This allows
us to prove the statistical significance of a splitting that we observe in the
h/e peak of the averaged spectrum. Our work illustrates in detail the role of
sample specific effects on the frequency spectrum of Aharonov-Bohm conductance
oscillations and it demonstrates how fine structures of a different physical
origin can be discriminated from sample specific features.Comment: accepted for publication in PR
Light emission from a scanning tunneling microscope: Fully retarded calculation
The light emission rate from a scanning tunneling microscope (STM) scanning a
noble metal surface is calculated taking retardation effects into account. As
in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev.
B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric
properties of tip and sample are described by experimentally measured
dielectric functions. The calculations are based on exact diffraction theory
through the vector equivalent of the Kirchoff integral. The present results are
qualitatively similar to those of the non-retarded calculations. The light
emission spectra have pronounced resonance peaks due to the formation of a
tip-induced plasmon mode localized to the cavity between the tip and the
sample. At a quantitative level, the effects of retardation are rather small as
long as the sample material is Au or Cu, and the tip consists of W or Ir.
However, for Ag samples, in which the resistive losses are smaller, the
inclusion of retardation effects in the calculation leads to larger changes:
the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These
changes improve the agreement with experiment. For a Ag sample and an Ir tip,
the quantum efficiency is 10 emitted photons in the visible
frequency range per tunneling electron. A study of the energy dissipation into
the tip and sample shows that in total about 1 % of the electrons undergo
inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear
in Phys. Rev. B (15 October 1998
