22,365 research outputs found
Trophic model of the coastal fisheries ecosystem of the west coast of peninsular Malaysia
A preliminary mass-balance trophic model was constructed for the coastal fisheries ecosystem of the West Coast of Peninsular Malaysia (0 - 120 m depth). The ecosystem was partitioned into 15 trophic groups, and biomasses for selected groups were obtained from research (trawl) surveys conducted in the area in 1987 and 1991. Trophic interactions of the groups are presented. The network analysis indicates that fishing fleets for demersal fishes and prawns have a major direct or indirect impact on most high-trophic level groups in the ecosystem.Fishery resources, Demersal fisheries, Fishery surveys, Biomass, Population density, Shrimp fisheries, Catch/effort, Trawling, Mathematical models, Coastal fisheries, Marine fisheries, Ecosystems, Trophic structure, ISEW, Malaysia, Malaya,
Equation of motion for multiqubit entanglement in multiple independent noisy channels
We investigate the possibility and conditions to factorize the entanglement
evolution of a multiqubit system passing through multi-sided noisy channels. By
means of a lower bound of concurrence (LBC) as entanglement measure, we derive
an explicit formula of LBC evolution of the N-qubit generalized
Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels,
based on which two kinds of factorizing conditions for the LBC evolution are
presented. In this case, the time-dependent LBC can be determined by a product
of initial LBC of the system and the LBC evolution of a maximally entangled
GGHZ state under the same multi-sided noisy channels. We analyze the realistic
situations where these two kinds of factorizing conditions can be satisfied. In
addition, we also discuss the dependence of entanglement robustness on the
number of the qubits and that of the noisy channels.Comment: 14 page
Atomic entanglement sudden death in a strongly driven cavity QED system
We study the entanglement dynamics of strongly driven atoms off-resonantly
coupled with cavity fields. We consider conditions characterized not only by
the atom-field coupling but also by the atom-field detuning. By studying two
different models within the framework of cavity QED, we show that the so-called
atomic entanglement sudden death (ESD) always occurs if the atom-field coupling
lager than the atom-field detuning, and is independent of the type of initial
atomic state
Thirty-fold: Extreme gravitational lensing of a quiescent galaxy at
We report the discovery of eMACSJ1341-QG-1, a quiescent galaxy at
located behind the massive galaxy cluster eMACSJ1341.92442 (). The
system was identified as a gravitationally lensed triple image in Hubble Space
Telescope images obtained as part of a snapshot survey of the most X-ray
luminous galaxy clusters at and spectroscopically confirmed in
ground-based follow-up observations with the ESO/X-Shooter spectrograph. From
the constraints provided by the triple image, we derive a first, crude model of
the mass distribution of the cluster lens, which predicts a gravitational
amplification of a factor of 30 for the primary image and a factor of
6 for the remaining two images of the source, making eMACSJ1341-QG-1 by
far the most strongly amplified quiescent galaxy discovered to date. Our
discovery underlines the power of SNAPshot observations of massive, X-ray
selected galaxy clusters for lensing-assisted studies of faint background
populations
Limits on MeV Dark Matter from the Effective Number of Neutrinos
Thermal dark matter that couples more strongly to electrons and photons than
to neutrinos will heat the electron-photon plasma relative to the neutrino
background if it becomes nonrelativistic after the neutrinos decouple from the
thermal background. This results in a reduction in N_eff below the
standard-model value, a result strongly disfavored by current CMB observations.
Taking conservative lower bounds on N_eff and on the decoupling temperature of
the neutrinos, we derive a bound on the dark matter particle mass of m_\chi >
3-9 MeV, depending on the spin and statistics of the particle. For p-wave
annihilation, our limit on the dark matter particle mass is stronger than the
limit derived from distortions to the CMB fluctuation spectrum produced by
annihilations near the epoch of recombination.Comment: 5 pages, 1 figure, discussion added, references added and updated,
labels added to figure, to appear in Phys. Rev.
Sample-specific and Ensemble-averaged Magnetoconductance of Individual Single-Wall Carbon Nanotubes
We discuss magnetotransport measurements on individual single-wall carbon
nanotubes with low contact resistance, performed as a function of temperature
and gate voltage. We find that the application of a magnetic field
perpendicular to the tube axis results in a large magnetoconductance of the
order of e^2/h at low temperature. We demonstrate that this magnetoconductance
consists of a sample-specific and of an ensemble-averaged contribution, both of
which decrease with increasing temperature. The observed behavior resembles
very closely the behavior of more conventional multi-channel mesoscopic wires,
exhibiting universal conductance fluctuations and weak localization. A
theoretical analysis of our experiments will enable to reach a deeper
understanding of phase-coherent one-dimensional electronic motion in SWNTs.Comment: Replaced with published version. Minor changes in tex
- …
