64 research outputs found
Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations
Background: Raine syndrome (RS) is a rare autosomal recessive bone dysplasia typified by osteosclerosis and dysmorphic facies due to FAM20C mutations. Initially reported as lethal in infancy, survival is possible into adulthood. We describe the molecular analysis and clinical phenotypes of five individuals from two consanguineous Brazilian families with attenuated Raine Syndrome with previously unreported features. Methods: The medical and dental clinical records were reviewed. Extracted deciduous and permanent teeth as well as oral soft tissues were analysed. Whole exome sequencing was undertaken and FAM20C cDNA sequenced in family 1. Results: Family 1 included 3 siblings with hypoplastic Amelogenesis Imperfecta (AI) (inherited abnormal dental enamel formation). Mild facial dysmorphism was noted in the absence of other obvious skeletal or growth abnormalities. A mild hypophosphataemia and soft tissue ectopic mineralization were present. A homozygous FAM20C donor splice site mutation (c.784 + 5 g > c) was identified which led to abnormal cDNA sequence. Family 2 included 2 siblings with hypoplastic AI and tooth dentine abnormalities as part of a more obvious syndrome with facial dysmorphism. There was hypophosphataemia, soft tissue ectopic mineralization, but no osteosclerosis. A homozygous missense mutation in FAM20C (c.1487C > T; p.P496L) was identified. Conclusions: The clinical phenotype of non-lethal Raine Syndrome is more variable, including between affected siblings, than previously described and an adverse impact on bone growth and health may not be a prominent feature. By contrast, a profound failure of dental enamel formation leading to a distinctive hypoplastic AI in all teeth should alert clinicians to the possibility of FAM20C mutations
Harmful and beneficial aspects of Parthenium hysterophorus: an update
Parthenium hysterophorus is a noxious weed in America, Asia, Africa and Australia. This weed is considered to be a cause of allergic respiratory problems, contact dermatitis, mutagenicity in human and livestock. Crop production is drastically reduced owing to its allelopathy. Also aggressive dominance of this weed threatens biodiversity. Eradication of P. hysterophorus by burning, chemical herbicides, eucalyptus oil and biological control by leaf-feeding beetle, stem-galling moth, stem-boring weevil and fungi have been carried out with variable degrees of success. Recently many innovative uses of this hitherto notorious plant have been discovered. Parthenium hysterophorus confers many health benefits, viz remedy for skin inflammation, rheumatic pain, diarrhoea, urinary tract infections, dysentery, malaria and neuralgia. Its prospect as nano-medicine is being carried out with some preliminary success so far. Removal of heavy metals and dye from the environment, eradication of aquatic weeds, use as substrate for commercial enzyme production, additives in cattle manure for biogas production, as biopesticide, as green manure and compost are to name a few of some other potentials. The active compounds responsible for hazardous properties have been summarized. The aim of this review article is to explore the problem P. hysterophorus poses as a weed, the effective control measures that can be implemented as well as to unravel the latent beneficial prospects of this weed
Genome Sequence of Brucella abortus Vaccine Strain S19 Compared to Virulent Strains Yields Candidate Virulence Genes
The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9–941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism
Effects of Bacillus thuringiensis δ -endotoxin-fed Helicoverpa armigera on the survival and development of the parasitoid Campoletis chlorideae
With the deployment of transgenic crops expressing δ-endotoxins from Bacillus thuringiensis (Bt) for pest management, there is a need to generate information on the interaction of crop pests with their natural enemies that are important for regulation of pest populations. Therefore, we studied the effects of the Bt δ-endotoxins Cry1Ab and Cry1Ac on the survival and development of the parasitoid Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) reared on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae fed on Bt toxin-intoxicated artificial diet. The H. armigera larvae fed on artificial diet impregnated with Cry1Ab and Cry1Ac at LC50 (effective concentration to kill 50% of the neonate H. armigera larvae) and ED50 (effective concentration to cause a 50% reduction in larval weight) levels before and after parasitization resulted in a significant reduction in cocoon formation and adult emergence of C. chlorideae. Larval period of the parasitoid was prolonged by 2 days when fed on Bt-intoxicated larvae. No adverse effects were observed on female fecundity. The observed effects appeared to be indirect in nature, because no Bt proteins were detected through enzyme-linked immunosorbent assay in the C. chlorideae larvae, cocoons, or adults fed on Cry1Ab- or Cry1Ac-treated H. armigera larvae. The effects of Bt toxin proteins on C. chlorideae were due to early mortality of H. armigera larvae, that is, before completion of parasitoid larval development
Assessment of Unmet Needs of Family Planning and Reasons for Non-Use of Contraceptive Methods among Women in Reproductive Age in Rural Community
Anxiolytic effect of minocycline in posttraumatic stress disorder model of Syrian hamsters
Temperature dependent properties of spray deposited Cu2CoSnS4 (CCTS) thin films (vol 28, pg 18891, 2017)
The original version of this article unfortunately contained an error in Sect. 3.3 Structural analysis Equation (7). The corrected version is published with this erratum (Eq. 7)
Temperature dependent properties of spray deposited Cu2CoSnS4 (CCTS) thin films
A modified spray pyrolysis technique was employed for the deposition of Cu2CoSnS4 (CCTS) thin films. X-ray diffraction study showed that the CCTS thin films exhibit stannite structure with preferred orientation along (112) plane. The phase purity of sprayed CCTS films was confirmed from Raman analysis, as the most intense peak is observed at 320 cm(-1) corresponding to A1 mode. With increase in substrate temperature the grains over the surface of the CCTS films become more distinct. The EDAX spectrum revealed the presence of different constituent elements such as, Cu, Co, Sn and S for the films deposited at 325 A degrees C. The optical absorption study showed that the energy band gap values of the CCTS films are decreasing from 1.70 to 1.46 eV with respect to increase in substrate temperature from 275 to 325 A degrees C
Utilisation of bubber wood shavings for the removal of Cu(II) and Ni(II) from aqueous solution
The potential of heat and chemically treated rubber wood shavings (RWS) to remove Cu (II) and Ni(II) was evaluated at bench-scale by varying parameters such as initial Cu(II) and Ni(II) concentrations, contact time and adsorbent dosage. Maximum Cu(II) and Ni(II) uptake was achieved using NaOH-treated RWS after 5 h of contact time, pH 5.0 (Cu), 5.5 (Ni) and 6.0 (mixed-metal solution), initial Cu(II) and Ni(II) of 100 mg L-1 and RWS dosage of 0.3% (w/v). Point of zero charge (pHPZC) value of 4.35 suggests the appropriateness of pH range used. Higher Cu(II) and Ni(II) adsorption following NaOH treatment was due to smaller average pore diameter (34.63 Å), higher mesopore content and higher surface negativity charge. EDAX analysis confirmed the presence of Cu and Ni on the surface of the RWS. The importance of carboxyl and hydroxyl functional groups during Cu(II) and Ni(II) removal is supported by the FTIR analysis and good correlation (R 2 of 0.96–0.99) with the pseudo-secondorder adsorption kinetic model. The results indicate the potential of using RWS as an alternative adsorbent to remove Cu(II) and Ni(II) from industrial wastewaters
Synthesis, characterization, potentiometry, and antimicrobial studies of transition metal complexes of a tridentate ligand
- …
