84 research outputs found
Application of Fast Fourier Transform-based Method for the Thermal System of Buried Pipe Heat Exchanger
The Fourier transform method for discrete sequences is introduced in this study and applied to decompose the heat flux per unit borehole depth in buried pipe heat exchangers (BPHE) into a summation of Fourier series. The linear relationship between the heat flux per unit borehole depth in BPHE and the cooling and heating load of Ground-Coupled Heat Pumps (GCHP) is delineated. It is demonstrated that, similar to the cooling and heating load of GCHP, the heat flux per unit borehole depth in BPHE exhibits a general trend with periodic variability on an annual scale (8760 hours). The Fourier transform of discrete sequences enables the representation of the heat flux per unit borehole depth in BPHE as a summation of Fourier series, comprising a Step Heat Flux (direct current components) and heat flux in trigonometric forms. Further investigation reveals that the heat flux in trigonometric form does not influence the long-term average temperature of the surrounding soil and rock, whereas the Step Heat Flux significantly affects it. Therefore, the long-term performance of BPHE is predominantly governed by the Step Heat Flux
Electromagnetic-Thermal Integrated Design Optimization for Hypersonic Vehicle Short-Time Duty PM Brushless DC Motor
High reliability is required for the permanent magnet brushless DC motor (PM-BLDCM) in an electrical pump of hypersonic vehicle. The PM-BLDCM is a short-time duty motor with high-power-density. Since thermal equilibrium is not reached for the PM-BLDCM, the temperature distribution is not uniform and there is a risk of local overheating. The winding is a main heat source and its insulation is thermally sensitive, so reducing the winding temperature rise is the key to the improvement of the reliability. In order to reduce the winding temperature rise, an electromagnetic-thermal integrated design optimization method is proposed. The method is based on electromagnetic analysis and thermal transient analysis. The requirements and constraints of electromagnetic and thermal design are considered in this method. The split ratio and the maximum flux density in stator lamination, which are highly relevant to the windings temperature rise, are optimized analytically. The analytical results are verified by finite element analysis (FEA) and experiments. The maximum error between the analytical and the FEA results is 4%. The errors between the analytical and measured windings temperature rise are less than 8%. It can be proved that the method can obtain the optimal design accurately to reduce the winding temperature rise
Investigation on thermal and electrical performance of late-model plate-and-tube in water-based PVT-PCM collectors
A large amount of redundant energy gained from incident solar energy is dissipated into the environment in the form of low-grade heat, which significantly reduces and limits the performance of photovoltaic cells, so removing or storing redundant heat and converting it back into available thermal energy is a promising way to improve the utilization of solar energy. A new combined water-based solar photovoltaic-thermophotovoltaic system embedded in the phase change material (PCM) mainly is proposed and designed. The effects of the water flow rate, cell operating temperature, the presence of PCM, and the thickness of the PCM factor on the overall module performance are explored comprehensively. The maximum thermal power output and the corresponding efficiency of the combined-system-embedded PCM are calculated numerically, The results obtained are compared with those of the PV (photovoltaic) and PVT(photovoltaic-thermal) cells with the same solar operating conditions. In addition, the PVT-PCM system possesses a higher power output and overall efficiency in comparison with the PVT and PV system, and the maximum cell temperature reduction of 12.54 °C and 42.28 °C is observed compared with PVT and PV systems. Moreover, an increased average power of 1.13 W and 4.59 in PVT-PCM systems is obtained compared with the PVT system and the PV system. Numerical calculation results illustrate that the maximum power output density and efficiency of the PVT-PCM are 3.06% and 16.15% greater than those of a single PVT system and PV system in the working time range, respectively. The obtained findings show the effectiveness of using PCM to improve power output and overall efficiency
Stability of Uncertain Impulsive Stochastic Genetic Regulatory Networks with Time-Varying Delay in the Leakage Term
This paper is concerned with the stability problem for a class of uncertain impulsive stochastic genetic regulatory networks (UISGRNs) with time-varying delays both in the leakage term and in the regulator function. By constructing a suitable Lyapunov-Krasovskii functional which uses the information on the lower bound of the delay sufficiently, a delay-dependent stability criterion is derived for the proposed UISGRNs model by using the free-weighting matrices method and convex combination technique. The conditions obtained here are expressed in terms of LMIs whose feasibility can be checked easily by MATLAB LMI control toolbox. In addition, three numerical examples are given to justify the obtained stability results
Improvement of earthquake and tsunami early warning service capabilities in Japan
In recent years, in order to improve the intelligent level of earthquake prevention and disaster reduction, the Japan Meteorological Agency has continuously improved the functions of the earthquake phenomena observation system (EPOS) and the intelligent prediction level of tsunami, and has made efforts to improve the earthquake and tsunami early warning service capabilities. In December 2022, it began to release follow-up earthquake early warning information in Hokkaido and Sanriku regions, and in February 2023, it began to release earthquake early warning information of long-term ground motion levels. This article aims to provide reference for the research and construction of earthquake early warning systems in China
Analysis of anisotropy anomalies identification in apparent resistivity observation
Since 1966, China has been using apparent resistivity observation to forecast strong aftershocks of the Xingtai earthquake. Retrospective studies of subsequent strong earthquakes have shown that anomalies in apparent resistivity observation before earthquakes usually exhibit anisotropic characteristics. In addition to the anisotropic changes in apparent resistivity before earthquakes, factors such as subway operation near the observation area, metal pipeline networks, and changes in water levels have also been found to cause anisotropic changes. These factors are called environmental interference factors. Therefore, distinguishing between anisotropic changes before earthquakes and anisotropic changes caused by interference and eliminating the effects of interference is crucial for using apparent resistivity observations for forecasting. Taking the observation of Hefei seismic station in Anhui Province as an example, a model is constructed using the finite element method to try to establish a method for analyzing anisotropy in apparent resistivity before earthquakes, and the data from other provincial stations are used for verification. In the modeling process, the influence coefficient is a measure of the relationship between the variation in apparent resistivity and the changes in the medium of the measurement area. The following results are obtained by calculating the influence coefficient using the finite element method: the influence coefficient between the power supply electrode and the measuring electrode of the apparent resistivity observation is negative, and the rest are positive, and the distribution of the influence coefficient shows obvious symmetry, with the axis of symmetry being the line connecting the electrodes and its midline, and the absolute value of the influence coefficient is inversely proportional to the distance from the electrodes. In addition, according to the constructed finite element model, the amplitude of anisotropic changes caused by interference can be quantitatively calculated. Given that interference is ubiquitous in various regions of the world, this study can provide a reference for international earthquake forecasters to quantitatively remove environmental interference in anisotropy. Moreover, when building apparent resistivity stations in seismic areas for earthquake prediction, it is best to avoid areas with larger local influence coefficients to ensure that the anomalous data before the earthquake is true and reliable
EXPERIMENTAL INVESTIGATION OF THE THERMAL PERFORMANCE OF WRAPAROUND LOOP HEAT PIPE HEAT EXCHANGER FOR HEAT RECOVERY IN AIR HANDLING UNITS
The analysis of the operating performance of a chiller system based on hierarchal cluster method
Adsorption behaviour of congo red by cellulose/chitosan hydrogel beads regenerated from ionic liquid
Structural characterization of the ABC transporter DppABCDF in Escherichia coli reveals insights into dipeptide acquisition.
The prokaryote-specific ATP-binding cassette (ABC) peptide transporters are involved in various physiological processes and plays an important role in transporting naturally occurring antibiotics across the membrane to their intracellular targets. The dipeptide transporter DppABCDF in Gram-negative bacteria is composed of five distinct subunits, yet its assembly and underlying peptide import mechanism remain elusive. Here, we report the cryo-EM structures of the DppBCDF translocator from Escherichia coli in both its apo form and in complexes bound to nonhydrolyzable or slowly hydrolyzable ATP analogs (AMPPNP and ATPγS), as well as the ATPγS-bound DppABCDF full transporter. Unlike the reported heterotrimeric Mycobacterium tuberculosis DppBCD translocator, the E. coli DppBCDF translocator is a heterotetramer, with a [4Fe-4S] cluster at the C-terminus of each ATPase subunit. Structural studies reveal that ATPγS/AMPPNP-bound DppBCDF adopts an inward-facing conformation, similar to that of apo-DppBCDF, with only one ATPγS or AMPPNP molecule bound to DppF. By contrast, ATPγS-bound DppABCDF adopts an outward-facing conformation, with two ATPγS molecules glueing DppD and DppF at the interface. Consistent with structural observations, ATPase activity assays show that the DppBCDF translocator itself is inactive and its activation requires concurrent binding of DppA and ATP. In addition, bacterial complementation experiments imply that a unique periplasmic scoop motif in DppB may play important roles in ensuring dipeptide substrates import across the membrane, presumably by preventing dipeptide back-and-forth binding to DppA and avoiding dipeptides escaping into the periplasm upon being released from DppA
- …
