35 research outputs found

    The hidden persuaders break into the tired brain

    Full text link
    There is a long-lasting debate on whether subliminal advertising actually works. In this context there are some studies suggesting that subjects’ motivation is a crucial point. Karremans et al. [Karremans, J. C., Stroebe, W., & Claus, J. (2006). Beyond Vicary’s fantasies: The impact of subliminal priming and brand choice. Journal of Experimental Social Psychology, 42, 792–798] showed that subjects were influenced in their intention to drink a specific brand of soft drink by a subliminally presented brand prime, but only if they were thirsty. In the present study, we adapted their paradigm to the concept of ‘concentration’ and embedded the subliminal presentation of a brand logo into a computer game. Actual subsequent consumption of dextrose pills (of the presented or a not presented brand) was measured dependent on the level of participants’ tiredness and the subliminally presented logo. We found the same pattern as Karremans et al. (2006): only tired participants consumed more of the subliminally presented than the not presented brand. Therefore, the findings confirm that subjects are influenced by subliminally presented stimuli if these stimuli are need-related and if subjects are in the matching motivational state

    Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Get PDF
    We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc) of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production

    Comment on 'Nonreciprocal light propagation in a silicon photonic circuit'

    Get PDF
    We show that the structure demonstrated by Feng et al. (Reports, 5 August 2011, p. 729) cannot enable optical isolation because it possesses a symmetric scattering matrix. Moreover, one cannot construct an optical isolator by incorporating this structure into any system as long as the system is linear and time-independent and is described by materials with a scalar dielectric function

    Rich Magnetic Phase Diagram of Putative Helimagnet Sr3_3Fe2_2O7_7

    Get PDF
    The cubic perovskite SrFeO3_3 was recently reported to host hedgehog- and skyrmion-lattice phases in a highly symmetric crystal structure which does not support the Dzyaloshinskii-Moriya interactions commonly invoked to explain such magnetic order. Hints of a complex magnetic phase diagram have also recently been found in powder samples of the single-layer Ruddlesden-Popper analog Sr2_2FeO4_4, so a reinvestigation of the bilayer material Sr3_3Fe2_2O7_7, believed to be a simple helimagnet, is called for. Our magnetization and dilatometry studies reveal a rich magnetic phase diagram with at least 6 distinct magnetically ordered phases and strong similarities to that of SrFeO3_3. In particular, at least one phase is apparently multiple-q\mathbf{q}, and the q\mathbf{q}s are not observed to vary among the phases. Since Sr3_3Fe2_2O7_7 has only two possible orientations for its propagation vector, some of the phases are likely exotic multiple-q\mathbf{q} order, and it is possible to fully detwin all phases and more readily access their exotic physics.Comment: 14 pages, 13 figure

    >

    No full text

    A retrospective on Telos as a metamodeling language for requirements engineering

    No full text
    Telos is a conceptual modeling language intended to capture software knowledge, such as software system requirements, domain knowledge, architectures, design decisions and more. To accomplish this, Telos was designed to be extensible in the sense that the concepts used to capture software knowledge can be defined in the language itself, instead of being built-in. This extensibility is accomplished through powerful metamodeling features, which proved very useful for interrelating heterogeneous models from requirements, model-driven software engineering, data integration, ontology engineering, cultural informatics and education. We trace the evolution of ideas and research results in the Telos project from its origins in the late eighties. Our account looks at the semantics of Telos, its various implementations and its applications. We also recount related research by other groups and the cross-influences of ideas thereof. We conclude with lessons learnt.Published: 12 March 2020</p
    corecore