9,695 research outputs found
Political meritocracy and its betrayal
Some Confucian scholars have recently claimed that Confucian political meritocracy is superior to Western democracy. I have great reservations about such a view. In this article, I argue that so lo..
An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration
We propose numerical algorithms for solving large deformation diffeomorphic
image registration problems. We formulate the nonrigid image registration
problem as a problem of optimal control. This leads to an infinite-dimensional
partial differential equation (PDE) constrained optimization problem.
The PDE constraint consists, in its simplest form, of a hyperbolic transport
equation for the evolution of the image intensity. The control variable is the
velocity field. Tikhonov regularization on the control ensures well-posedness.
We consider standard smoothness regularization based on - or
-seminorms. We augment this regularization scheme with a constraint on the
divergence of the velocity field rendering the deformation incompressible and
thus ensuring that the determinant of the deformation gradient is equal to one,
up to the numerical error.
We use a Fourier pseudospectral discretization in space and a Chebyshev
pseudospectral discretization in time. We use a preconditioned, globalized,
matrix-free, inexact Newton-Krylov method for numerical optimization. A
parameter continuation is designed to estimate an optimal regularization
parameter. Regularity is ensured by controlling the geometric properties of the
deformation field. Overall, we arrive at a black-box solver. We study spectral
properties of the Hessian, grid convergence, numerical accuracy, computational
efficiency, and deformation regularity of our scheme. We compare the designed
Newton-Krylov methods with a globalized preconditioned gradient descent. We
study the influence of a varying number of unknowns in time.
The reported results demonstrate excellent numerical accuracy, guaranteed
local deformation regularity, and computational efficiency with an optional
control on local mass conservation. The Newton-Krylov methods clearly
outperform the Picard method if high accuracy of the inversion is required.Comment: 32 pages; 10 figures; 9 table
Series solution to the laser-ion interaction in a Raman-type configuration
The Raman interaction of a trapped ultracold ion with two travelling wave
lasers is studied analytically with series solutions, in the absence of the
rotating wave approximation (RWA) and the restriction of both the Lamb-Dicke
limit and the weak excitation regime. The comparison is made between our
solutions and those under the RWA to demonstrate the validity region of the
RWA. As a practical example, the preparation of Schr\"odinger-cat states with
our solutions is proposed beyond the weak excitation regime.Comment: 15 Pages, 3 Figure
Distributed-memory large deformation diffeomorphic 3D image registration
We present a parallel distributed-memory algorithm for large deformation
diffeomorphic registration of volumetric images that produces large isochoric
deformations (locally volume preserving). Image registration is a key
technology in medical image analysis. Our algorithm uses a partial differential
equation constrained optimal control formulation. Finding the optimal
deformation map requires the solution of a highly nonlinear problem that
involves pseudo-differential operators, biharmonic operators, and pure
advection operators both forward and back- ward in time. A key issue is the
time to solution, which poses the demand for efficient optimization methods as
well as an effective utilization of high performance computing resources. To
address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov
solver. Our algorithm integrates several components: a spectral discretization
in space, a semi-Lagrangian formulation in time, analytic adjoints, different
regularization functionals (including volume-preserving ones), a spectral
preconditioner, a highly optimized distributed Fast Fourier Transform, and a
cubic interpolation scheme for the semi-Lagrangian time-stepping. We
demonstrate the scalability of our algorithm on images with resolution of up to
on the "Maverick" and "Stampede" systems at the Texas Advanced
Computing Center (TACC). The critical problem in the medical imaging
application domain is strong scaling, that is, solving registration problems of
a moderate size of ---a typical resolution for medical images. We are
able to solve the registration problem for images of this size in less than
five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA;
November 201
Complete solution of the Schr\"odinger equation for the time-dependent linear potential
The complete solutions of the Schr\"odinger equation for a particle with
time-dependent mass moving in a time-dependent linear potential are presented.
One solution is based on the wave function of the plane wave, and the other is
with the form of the Airy function. A comparison is made between the present
solution and former ones to show the completeness of the present solution.Comment: Revtex, No figure
A phase-field model for fractures in incompressible solids
Within this work, we develop a phase-field description for simulating
fractures in incompressible materials. Standard formulations are subject to
volume-locking when the solid is (nearly) incompressible. We propose an
approach that builds on a mixed form of the displacement equation with two
unknowns: a displacement field and a hydro-static pressure variable.
Corresponding function spaces have to be chosen properly. On the discrete
level, stable Taylor-Hood elements are employed for the displacement-pressure
system. Two additional variables describe the phase-field solution and the
crack irreversibility constraint. Therefore, the final system contains four
variables: displacements, pressure, phase-field, and a Lagrange multiplier. The
resulting discrete system is nonlinear and solved monolithically with a
Newton-type method. Our proposed model is demonstrated by means of several
numerical studies based on two numerical tests. First, different finite element
choices are compared in order to investigate the influence of higher-order
elements in the proposed settings. Further, numerical results including spatial
mesh refinement studies and variations in Poisson's ratio approaching the
incompressible limit, are presented
- …
