9,695 research outputs found

    Political meritocracy and its betrayal

    Get PDF
    Some Confucian scholars have recently claimed that Confucian political meritocracy is superior to Western democracy. I have great reservations about such a view. In this article, I argue that so lo..

    An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration

    Full text link
    We propose numerical algorithms for solving large deformation diffeomorphic image registration problems. We formulate the nonrigid image registration problem as a problem of optimal control. This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for the evolution of the image intensity. The control variable is the velocity field. Tikhonov regularization on the control ensures well-posedness. We consider standard smoothness regularization based on H1H^1- or H2H^2-seminorms. We augment this regularization scheme with a constraint on the divergence of the velocity field rendering the deformation incompressible and thus ensuring that the determinant of the deformation gradient is equal to one, up to the numerical error. We use a Fourier pseudospectral discretization in space and a Chebyshev pseudospectral discretization in time. We use a preconditioned, globalized, matrix-free, inexact Newton-Krylov method for numerical optimization. A parameter continuation is designed to estimate an optimal regularization parameter. Regularity is ensured by controlling the geometric properties of the deformation field. Overall, we arrive at a black-box solver. We study spectral properties of the Hessian, grid convergence, numerical accuracy, computational efficiency, and deformation regularity of our scheme. We compare the designed Newton-Krylov methods with a globalized preconditioned gradient descent. We study the influence of a varying number of unknowns in time. The reported results demonstrate excellent numerical accuracy, guaranteed local deformation regularity, and computational efficiency with an optional control on local mass conservation. The Newton-Krylov methods clearly outperform the Picard method if high accuracy of the inversion is required.Comment: 32 pages; 10 figures; 9 table

    Series solution to the laser-ion interaction in a Raman-type configuration

    Get PDF
    The Raman interaction of a trapped ultracold ion with two travelling wave lasers is studied analytically with series solutions, in the absence of the rotating wave approximation (RWA) and the restriction of both the Lamb-Dicke limit and the weak excitation regime. The comparison is made between our solutions and those under the RWA to demonstrate the validity region of the RWA. As a practical example, the preparation of Schr\"odinger-cat states with our solutions is proposed beyond the weak excitation regime.Comment: 15 Pages, 3 Figure

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    Complete solution of the Schr\"odinger equation for the time-dependent linear potential

    Full text link
    The complete solutions of the Schr\"odinger equation for a particle with time-dependent mass moving in a time-dependent linear potential are presented. One solution is based on the wave function of the plane wave, and the other is with the form of the Airy function. A comparison is made between the present solution and former ones to show the completeness of the present solution.Comment: Revtex, No figure

    A phase-field model for fractures in incompressible solids

    Full text link
    Within this work, we develop a phase-field description for simulating fractures in incompressible materials. Standard formulations are subject to volume-locking when the solid is (nearly) incompressible. We propose an approach that builds on a mixed form of the displacement equation with two unknowns: a displacement field and a hydro-static pressure variable. Corresponding function spaces have to be chosen properly. On the discrete level, stable Taylor-Hood elements are employed for the displacement-pressure system. Two additional variables describe the phase-field solution and the crack irreversibility constraint. Therefore, the final system contains four variables: displacements, pressure, phase-field, and a Lagrange multiplier. The resulting discrete system is nonlinear and solved monolithically with a Newton-type method. Our proposed model is demonstrated by means of several numerical studies based on two numerical tests. First, different finite element choices are compared in order to investigate the influence of higher-order elements in the proposed settings. Further, numerical results including spatial mesh refinement studies and variations in Poisson's ratio approaching the incompressible limit, are presented
    corecore