1,344 research outputs found
Recommended from our members
BioNanoAdhesion: atomic force microscopy study of the electrostatic properties of pyridine-and imidazole-based polycationic surfaces
Self-assembled monolayers of pyridine- and imidazole-based disulfides are currently being produced on low roughness gold surfaces. The electrostatic interaction between these surfaces and an atomic force microscope cantilever, modified with a silica microparticle, will subsequently be investigated as a function of environmental pH. The results can be used towards the development of improved nanoparticulate non-viral gene delivery vectors
How to Identify Rare and Endangered Ferns and Fern Allies
Identification of rare and endangered plant species is the first requirement for any conservation programme. The IUCN guideline is the only available method to identify the rare and endangered species and it requires vast data on the wild population of the target species. None of the biological characters, which are playing main role in the survival and distribution of several species, is used in IUCN guideline. In the meantime there are several difficulties in following IUCN guideline, particularly the non availability of complete field data. Moreover, the same guideline can not be used for all the groups of species in equal importance. The vascular cryptogams, pteridophytes, are also an important component of any mountainous flora and they have also to be conserved in nature. As they are the primitive vascular plants on the earth, they are getting depleted in the flora due to various reasons and it is the right time to identify the rare and endangered pteridophytes to conserve them. By considering various difficulties of IUCN method for the identification rare and endangered pteridophytes, a very simple method has been adopted by using just four criteria and this method can be applied to Pteridophytes from any region of the world
Overexpression Analysis of emv2 gene coding for Late Embryogenesis Abundant Protein from Vigna radiata (Wilczek)
Late embryogenesis abundant (LEA) proteins are speculated to protect against water stress deficit in plants. An over expression system for mungbean late embryogenesis abundant protein, emv2 was constructed in a pET29a vector, designated pET-emv2 which is responsible for higher expression under the transcriptional/translational control of T7/lac promoter incorporated in the Escherichia coli BL21 (DE3).Induction protocol was optimized for pET recombinants harboring the target gene. Overexpressed EMV2 protein was purified to homogeneity and the protein profile monitored by SDS-PAGE
Glimpses of Tribal Botanical Knowledge of Tirunelveli Hills, Western Ghats, India
In the present paper, 46 plant species of angiosperms belonging to 19 genera of Euphorbiaceae that occur naturally in the Tirunelveli Hills of western Ghats, India, were chosen for study. It was found that the uses of Euphorbiaceous plants by the inhabitants of this region cover a number of broad categories including food, various kinds of poisons, medicines, sundry types of oils, waxes, rubbers, varnishes, compounds for paints and other industrial products
Comprehensive mutational analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis
DEXD/H box putative RNA helicases are required for pre-rRNA processing in Saccharomyces cerevisiae, although their exact roles and substrates are unknown. To characterize the significance of the conserved motifs for helicase function, a series of five mutations were created in each of the eight essential RNA helicases (Has1, Dbp6, Dbp10, Mak5, Mtr4, Drs1, Spb4, and Dbp9) involved in 60S ribosomal subunit biogenesis. Each mutant helicase was screened for the ability to confer dominant negative growth defects and for functional complementation. Different mutations showed different degrees of growth inhibition among the helicases, suggesting that the conserved regions do not function identically in vivo. Mutations in motif I and motif II (the DEXD/H box) often conferred dominant negative growth defects, indicating that these mutations do not interfere with substrate binding. In addition, mutations in the putative unwinding domains (motif III) demonstrated that conserved amino acids are often not essential for function. Northern analysis of steady-state RNA from strains expressing mutant helicases showed that the dominant negative mutations also altered pre-rRNA processing. Coimmunoprecipitation experiments indicated that some RNA helicases associated with each other. In addition, we found that yeasts disrupted in expression of the two nonessential RNA helicases, Dbp3 and Dbp7, grew worse than when either one alone was disrupted
Dyon Spectrum in CHL Models
We propose a formula for the degeneracy of quarter BPS dyons in a class of
CHL models. The formula uses a modular form of a subgroup of the genus two
modular group Sp(2,Z). Our proposal is S-duality invariant and reproduces
correctly the entropy of a dyonic black hole to first non-leading order for
large values of the charges.Comment: LaTeX file, 38 pages, minor changes in section 3.3(v2), minor changes
in introduction, appendix A and C(v3
Transdermal Delivery of Functional Collagen \u3cem\u3eVia\u3c/em\u3e Polyvinylpyrrolidone Microneedles
Collagen makes up a large proportion of the human body, particularly the skin. As the body ages, collagen content decreases, resulting in wrinkled skin and decreased wound healing capabilities. This paper presents a method of delivering type I collagen into porcine and human skin utilizing a polyvinylpyrrolidone microneedle delivery system. The microneedle patches were made with concentrations of 1, 2, 4, and 8% type I collagen (w/w). Microneedle structures and the distribution of collagen were characterized using scanning electron microscopy and confocal microscopy. Patches were then applied on the porcine and human skin, and their effectiveness was examined using fluorescence microscopy. The results illustrate that this microneedle delivery system is effective in delivering collagen I into the epidermis and dermis of porcine and human skin. Since the technique presented in this paper is quick, safe, effective and easy, it can be considered as a new collagen delivery method for cosmetic and therapeutic applications
Generalized Kac-Moody Algebras from CHL dyons
We provide evidence for the existence of a family of generalized
Kac-Moody(GKM) superalgebras, G_N, whose Weyl-Kac-Borcherds denominator formula
gives rise to a genus-two modular form at level N, Delta_{k/2}(Z), for
(N,k)=(1,10), (2,6), (3,4), and possibly (5,2). The square of the automorphic
form is the modular transform of the generating function of the degeneracy of
CHL dyons in asymmetric Z_N-orbifolds of the heterotic string compactified on
T^6. The new generalized Kac-Moody superalgebras all arise as different
`automorphic corrections' of the same Lie algebra and are closely related to a
generalized Kac-Moody superalgebra constructed by Gritsenko and Nikulin. The
automorphic forms, Delta_{k/2}(Z), arise as additive lifts of Jacobi forms of
(integral) weight k/2 and index 1/2. We note that the orbifolding acts on the
imaginary simple roots of the unorbifolded GKM superalgebra, G_1 leaving the
real simple roots untouched. We anticipate that these superalgebras will play a
role in understanding the `algebra of BPS states' in CHL compactifications.Comment: LaTeX, 35 pages; v2: improved referencing and discussion; typos
corrected; v3 [substantial revision] 44 pages, modularity of additive lift
proved, product representation of the forms also given; further references
adde
- …
