253 research outputs found
Potensi Bakteri Bacillus dan Lactobacillus sebagai Probiotik untuk Mengurangi Pencemaran Amonia pada Kandang Unggas
The experiment was conducted in two phases. The first experiment was to observe the effectivity of six culture of Bacillus and Lactobacillus bacteria for reducing fecal ammonia. The second experiment was to evaluate the application of Bacillus and Lactobacillus bacteria as probiotic for reducing ammonia feses and litter in broiler chicken house and observe its effect on the performance. Six bacteria culture consisting of three species of Bacillus bacteria (Bacillus subtilis, Bacillus cereus and Bacillus thuringiensis) and three species of Lactobacillus bacteria (Lactobacillus acidophillus, Lactobacillus bulgaricus and Streptococcus thermophillus) were used in the first experiment and 200 Day Old Chicks CP 707 were used in application of probiotic at the second experiment. Probiotic treatment were administered by drinking water, sprayed on the litter, combination of drinking water and spraying, and without probiotic as the control. The result of the first experiment showed that the six bacterial cultures and their combination significantly (P<0, 05) reduced feses ammonia and pH. The result of the second experiment showed that the probiotic treatment was significantly (P<0, 05) reduced ammonia of fresh fecal and litter, but was not significantly improving the performance of the chickens. The conclusion of this experiment was that the combination of six bacterial cultures of Bacillus and Lactobacillus as probiotic was effective to reduce ammonia pollution in poultry hous
Theta Vectors and Quantum Theta Functions
In this paper, we clarify the relation between Manin's quantum theta function
and Schwarz's theta vector in comparison with the kq representation, which is
equivalent to the classical theta function, and the corresponding coordinate
space wavefunction. We first explain the equivalence relation between the
classical theta function and the kq representation in which the translation
operators of the phase space are commuting. When the translation operators of
the phase space are not commuting, then the kq representation is no more
meaningful. We explain why Manin's quantum theta function obtained via algebra
(quantum tori) valued inner product of the theta vector is a natural choice for
quantum version of the classical theta function (kq representation). We then
show that this approach holds for a more general theta vector with constant
obtained from a holomorphic connection of constant curvature than the simple
Gaussian one used in the Manin's construction. We further discuss the
properties of the theta vector and of the quantum theta function, both of which
have similar symmetry properties under translation.Comment: LaTeX 21 pages, give more explicit explanations for notions given in
the tex
Relations Among Universal Equations For Gromov-Witten Invariants
In this paper, we study relations among known universal equations for
Gromov-Witten invariants at genus 1 and 2.Comment: LaTex file, 13 page
The symplectic origin of conformal and Minkowski superspaces
Supermanifolds provide a very natural ground to understand and handle
supersymmetry from a geometric point of view; supersymmetry in and
dimensions is also deeply related to the normed division algebras.
In this paper we want to show the link between the conformal group and
certain types of symplectic transformations over division algebras. Inspired by
this observation we then propose a new\,realization of the real form of the 4
dimensional conformal and Minkowski superspaces we obtain, respectively, as a
Lagrangian supermanifold over the twistor superspace and a
big cell inside it.
The beauty of this approach is that it naturally generalizes to the 6
dimensional case (and possibly also to the 10 dimensional one) thus providing
an elegant and uniform characterization of the conformal superspaces.Comment: 15 pages, references added, minor change
Harmonic Superspaces in Low Dimensions
Harmonic superspaces for spacetimes of dimension are constructed.
Some applications are given.Comment: 16, kcl-th-94-15. Two further references have been added (12 and 13)
and a few typographical errors have been correcte
A representation formula for maps on supermanifolds
In this paper we analyze the notion of morphisms of rings of superfunctions
which is the basic concept underlying the definition of supermanifolds as
ringed spaces (i.e. following Berezin, Leites, Manin, etc.). We establish a
representation formula for all morphisms from the algebra of functions on an
ordinary manifolds to the superalgebra of functions on an open subset of
R^{p|q}. We then derive two consequences of this result. The first one is that
we can integrate the data associated with a morphism in order to get a (non
unique) map defined on an ordinary space (and uniqueness can achieved by
restriction to a scheme). The second one is a simple and intuitive recipe to
compute pull-back images of a function on a manifold by a map defined on a
superspace.Comment: 23 page
Graded Majorana spinors
In many mathematical and physical contexts spinors are treated as Grassmann
odd valued fields. We show that it is possible to extend the classification of
reality conditions on such spinors by a new type of Majorana condition. In
order to define this graded Majorana condition we make use of
pseudo-conjugation, a rather unfamiliar extension of complex conjugation to
supernumbers. Like the symplectic Majorana condition, the graded Majorana
condition may be imposed, for example, in spacetimes in which the standard
Majorana condition is inconsistent. However, in contrast to the symplectic
condition, which requires duplicating the number of spinor fields, the graded
condition can be imposed on a single Dirac spinor. We illustrate how graded
Majorana spinors can be applied to supersymmetry by constructing a globally
supersymmetric field theory in three-dimensional Euclidean space, an example of
a spacetime where standard Majorana spinors do not exist.Comment: 16 pages, version to appear in J. Phys. A; AFK previously published
under the name A. F. Schunc
The modular geometry of Random Regge Triangulations
We show that the introduction of triangulations with variable connectivity
and fluctuating egde-lengths (Random Regge Triangulations) allows for a
relatively simple and direct analyisis of the modular properties of 2
dimensional simplicial quantum gravity. In particular, we discuss in detail an
explicit bijection between the space of possible random Regge triangulations
(of given genus g and with N vertices) and a suitable decorated version of the
(compactified) moduli space of genus g Riemann surfaces with N punctures. Such
an analysis allows us to associate a Weil-Petersson metric with the set of
random Regge triangulations and prove that the corresponding volume provides
the dynamical triangulation partition function for pure gravity.Comment: 36 pages corrected typos, enhanced introductio
Fusion rules and vortices in superconductors
The "half-quantum" vortices () and quasiparticles () in a
two-dimensional superconductor obey the Ising-like fusion rules
, , and . We explain how the physical fusion of vortex-antivortex pairs allows
us to use these rules to read out the information encoded in the topologically
protected space of degenerate ground states. We comment on the potential
applicability of this fact to quantum computation.
Modified 11/30/05 to reflect manuscript as accepted for publication. Includes
corrected last section.Comment: 23 pages, REVTEX
Menelaus relation and Fay's trisecant formula are associativity equations
It is shown that the celebrated Menelaus relation and Fay's trisecant formula
similar to the WDVV equation are associativity conditions for structure
constants of certain three-dimensional algebra.Comment: Talk given at the Conference " Mathematics and Physics of Solitons
and Integrable Systems", Dijon, 28.6-2.7, 2009. Minor misprints correcte
- …
