3,926 research outputs found
On the stability of high-speed milling with spindle speed variation
Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscre- tization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining
Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions
Light-emitting diodes are of importance for lighting, displays, optical
interconnects, logic and sensors. Hence the development of new systems that
allow improvements in their efficiency, spectral properties, compactness and
integrability could have significant ramifications. Monolayer transition metal
dichalcogenides have recently emerged as interesting candidates for
optoelectronic applications due to their unique optical properties.
Electroluminescence has already been observed from monolayer MoS2 devices.
However, the electroluminescence efficiency was low and the linewidth broad due
both to the poor optical quality of MoS2 and to ineffective contacts. Here, we
report electroluminescence from lateral p-n junctions in monolayer WSe2 induced
electrostatically using a thin boron nitride support as a dielectric layer with
multiple metal gates beneath. This structure allows effective injection of
electrons and holes, and combined with the high optical quality of WSe2 it
yields bright electroluminescence with 1000 times smaller injection current and
10 times smaller linewidth than in MoS2. Furthermore, by increasing the
injection bias we can tune the electroluminescence between regimes of
impurity-bound, charged, and neutral excitons. This system has the required
ingredients for new kinds of optoelectronic devices such as spin- and
valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional
electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material
Clinical practice guidelines for the foot and ankle in rheumatoid arthritis: a critical appraisal
Background: Clinical practice guidelines are recommendations systematically developed to assist clinical decision-making and inform healthcare. In current rheumatoid arthritis (RA) guidelines, management of the foot and ankle is under-represented and the quality of recommendation is uncertain. This study aimed to identify and critically appraise clinical practice guidelines for foot and ankle management in RA. Methods: Guidelines were identified electronically and through hand searching. Search terms 'rheumatoid arthritis', 'clinical practice guidelines' and related synonyms were used. Critical appraisal and quality rating were conducted using the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument. Results: Twenty-four guidelines were included. Five guidelines were high quality and recommended for use. Five high quality and seven low quality guidelines were recommended for use with modifications. Seven guidelines were low quality and not recommended for use. Five early and twelve established RA guidelines were recommended for use. Only two guidelines were foot and ankle specific. Five recommendation domains were identified in both early and established RA guidelines. These were multidisciplinary team care, foot healthcare access, foot health assessment/review, orthoses/insoles/splints, and therapeutic footwear. Established RA guidelines also had an 'other foot care treatments' domain. Conclusions: Foot and ankle management for RA features in many clinical practice guidelines recommended for use. Unfortunately, supporting evidence in the guidelines is low quality. Agreement levels are predominantly 'expert opinion' or 'good clinical practice'. More research investigating foot and ankle management for RA is needed prior to inclusion in clinical practice guidelines
Ferritins: furnishing proteins with iron
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins
AdS_3/LCFT_2 - Correlators in Cosmological Topologically Massive Gravity
For cosmological topologically massive gravity at the chiral point we
calculate momentum space 2- and 3-point correlators of operators in the
postulated dual CFT on the cylinder. These operators are sourced by the bulk
and boundary gravitons. Our correlators are fully consistent with the proposal
that cosmological topologically massive gravity at the chiral point is dual to
a logarithmic CFT. In the process we give a complete classification of
normalizable and non-normalizeable left, right and logarithmic solutions to the
linearized equations of motion in global AdS_3.Comment: 39 pages + appendices, 1 eps figure, v2: minor changes in text in
4.1.2, corrected typo in (2.31
Why Are Male Social Relationships Complex in the Doubtful Sound Bottlenose Dolphin Population?
Copyright 2008 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD
Interstellar Dust Close to the Sun
The low density interstellar medium (ISM) close to the Sun and inside of the
heliosphere provides a unique laboratory for studying interstellar dust grains.
Grain characteristics in the nearby ISM are obtained from observations of
interstellar gas and dust inside of the heliosphere and the interstellar gas
towards nearby stars. Comparison between the gas composition and solar
abundances suggests that grains are dominated by olivines and possibly some
form of iron oxide. Measurements of the interstellar Ne/O ratio by the
Interstellar Boundary Explorer spacecraft indicate that a high fraction of
interstellar oxygen in the ISM must be depleted onto dust grains. Local
interstellar abundances are consistent with grain destruction in ~150 km/s
interstellar shocks, provided that the carbonaceous component is hydrogenated
amorphous carbon and carbon abundances are correct. Variations in relative
abundances of refractories in gas suggest variations in the history of grain
destruction in nearby ISM. The large observed grains, > 1 micron, may indicate
a nearby reservoir of denser ISM. Theoretical three-dimensional models of the
interaction between interstellar dust grains and the solar wind predict that
plumes of about 0.18 micron dust grains form around the heliosphere.Comment: 2011 AGOS Taiwan meeting; accepted for publication in Earth, Planets
and Spac
Development and Validation of the Behavioral Tendencies Questionnaire
At a fundamental level, taxonomy of behavior and behavioral tendencies can be described
in terms of approach, avoid, or equivocate (i.e., neither approach nor avoid). While there are
numerous theories of personality, temperament, and character, few seem to take advantage
of parsimonious taxonomy. The present study sought to implement this taxonomy by
creating a questionnaire based on a categorization of behavioral temperaments/tendencies
first identified in Buddhist accounts over fifteen hundred years ago. Items were developed
using historical and contemporary texts of the behavioral temperaments, described as
“Greedy/Faithful”, “Aversive/Discerning”, and “Deluded/Speculative”. To both maintain
this categorical typology and benefit from the advantageous properties of forced-choice
response format (e.g., reduction of response biases), binary pairwise preferences for items
were modeled using Latent Class Analysis (LCA). One sample (n1 = 394) was used to estimate
the item parameters, and the second sample (n2 = 504) was used to classify the participants
using the established parameters and cross-validate the classification against
multiple other measures. The cross-validated measure exhibited good nomothetic span
(construct-consistent relationships with related measures) that seemed to corroborate the
ideas present in the original Buddhist source documents. The final 13-block questionnaire
created from the best performing items (the Behavioral Tendencies Questionnaire or BTQ)
is a psychometrically valid questionnaire that is historically consistent, based in behavioral
tendencies, and promises practical and clinical utility particularly in settings that teach and
study meditation practices such as Mindfulness Based Stress Reduction (MBSR)
An approach for the calculation of one-loop effective actions, vacuum energies, and spectral counting functions
In this paper, we provide an approach for the calculation of one-loop
effective actions, vacuum energies, and spectral counting functions and discuss
the application of this approach in some physical problems. Concretely, we
construct the equations for these three quantities; this allows us to achieve
them by directly solving equations. In order to construct the equations, we
introduce shifted local one-loop effective actions, shifted local vacuum
energies, and local spectral counting functions. We solve the equations of
one-loop effective actions, vacuum energies, and spectral counting functions
for free massive scalar fields in , scalar fields in
three-dimensional hyperbolic space (the Euclidean Anti-de Sitter space
), in (the geometry of the Euclidean BTZ black hole), and in
, and the Higgs model in a -dimensional finite interval.
Moreover, in the above cases, we also calculate the spectra from the counting
functions. Besides exact solutions, we give a general discussion on approximate
solutions and construct the general series expansion for one-loop effective
actions, vacuum energies, and spectral counting functions. In doing this, we
encounter divergences. In order to remove the divergences, renormalization
procedures are used. In this approach, these three physical quantities are
regarded as spectral functions in the spectral problem.Comment: 37 pages, no figure. This is an enlarged and improved version of the
paper published in JHE
- …
