1,748 research outputs found

    A Neural Network Model of Spatio-Temporal Pattern Recognition, Recall and Timing

    Full text link
    This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.National Science Foundation (IRI-9024877

    Self-Organizing Grammar Induction Using a Neural Network Model

    Full text link
    This paper presents a self-organizing, real-time, hierarchical neural network model of sequential processing, and shows how it can be used to induce recognition codes corresponding to word categories and elementary grammatical structures. The model, first introduced in Mannes (1992), learns to recognize, store, and recall sequences of unitized patterns in a stable manner, either using short-term memory alone, or using long-term memory weights. Memory capacity is only limited by the number of nodes provided. Sequences are mapped to unitized patterns, making the model suitable for hierarchical operation. By using multiple modules arranged in a hierarchy and a simple mapping between output of lower levels and the input of higher levels, the induction of codes representing word category and simple phrase structures is an emergent property of the model. Simulation results are reported to illustrate this behavior.National Science Foundation (IRI-9024877

    The VITEWRITE Model of Handwriting Production

    Full text link
    This article describes the VITEWRITE model for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in the outflow command to a given synergy occurs. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. Each synergy exhibits a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.Office of Naval Research (N00014-92-J-1309); National Science Foundation (IRI-90-24877, IRI-87-16960); Air Force Office of Scientific Research (F49620-92-J-0225); Defense Advanced Research Projects Agency (AFOSR 90-0083

    A Neural Network Model for Cursive Script Production

    Full text link
    This article describes a neural network model, called the VITEWRITE model, for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a. hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The proposed controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in a given synergy is achieved. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. The separate "score" of onset times used in most prior models is hereby replaced by a self-scaling activity-released "motor program" that uses few memory resources, enables each synergy to exhibit a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless. connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data concerning band movements, such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.National Science Foundation (IRI 90-24877, IRI 87-16960); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); Defense Advanced Research Projects Agency (90-0083

    Classifying motor imagery in presence of speech

    Get PDF
    In the near future, brain-computer interface (BCI) applications for non-disabled users will require multimodal interaction and tolerance to dynamic environment. However, this conflicts with the highly sensitive recording techniques used for BCIs, such as electroencephalography (EEG). Advanced machine learning and signal processing techniques are required to decorrelate desired brain signals from the rest. This paper proposes a signal processing pipeline and two classification methods suitable for multiclass EEG analysis. The methods were tested in an experiment on separating left/right hand imagery in presence/absence of speech. The analyses showed that the presence of speech during motor imagery did not affect the classification accuracy significantly and regardless of the presence of speech, the proposed methods were able to separate left and right hand imagery with an accuracy of 60%. The best overall accuracy achieved for the 5-class separation of all the tasks was 47% and both proposed methods performed equally well. In addition, the analysis of event-related spectral power changes revealed characteristics related to motor imagery and speech

    A tractable DDN-POMDP Approach to Affective Dialogue Modeling for General Probabilistic Frame-based Dialogue Systems

    Get PDF
    We propose a new approach to developing a tractable affective dialogue model for general probabilistic frame-based dialogue systems. The dialogue model, based on the Partially Observable Markov Decision Process (POMDP) and the Dynamic Decision Network (DDN) techniques, is composed of two main parts, the slot level dialogue manager and the global dialogue manager. Our implemented dialogue manager prototype can handle hundreds of slots; each slot might have many values. A first evaluation of the slot level dialogue manager (1-slot case) showed that with a 95% confidence level the DDN-POMDP dialogue strategy outperforms three simple handcrafted dialogue strategies when the user's action error is induced by stress

    Slow Sphering to Suppress Non-Stationaries in the EEG

    Get PDF
    Non-stationary signals are ubiquitous in electroencephalogram (EEG) signals and pose a problem for robust application of brain-computer interfaces (BCIs). These non-stationarities can be caused by changes in neural background activity. We present a dynamic spatial filter based on time local whitening that significantly reduces the detrimental influence of covariance changes during event-related desynchronization classification of an imaginary movement task

    A POMDP approach to Affective Dialogue Modeling

    Get PDF
    We propose a novel approach to developing a dialogue model that is able to take into account some aspects of the user's affective state and to act appropriately. Our dialogue model uses a Partially Observable Markov Decision Process approach with observations composed of the observed user's affective state and action. A simple example of route navigation is explained to clarify our approach. The preliminary results showed that: (1) the expected return of the optimal dialogue strategy depends on the correlation between the user's affective state & the user's action and (2) the POMDP dialogue strategy outperforms five other dialogue strategies (the random, three handcrafted and greedy action selection strategies)
    corecore