468 research outputs found
BPS Spectrum, Indices and Wall Crossing in N=4 Supersymmetric Yang-Mills Theories
BPS states in N=4 supersymmetric SU(N) gauge theories in four dimensions can
be represented as planar string networks with ends lying on D3-branes. We
introduce several protected indices which capture information on the spectrum
and various quantum numbers of these states, give their wall crossing formula
and describe how using the wall crossing formula we can compute all the indices
at all points in the moduli space.Comment: LaTeX file, 33 pages, 15 figure
Wall-Crossing from Boltzmann Black Hole Halos
A key question in the study of N=2 supersymmetric string or field theories is
to understand the decay of BPS bound states across walls of marginal stability
in the space of parameters or vacua. By representing the potentially unstable
bound states as multi-centered black hole solutions in N=2 supergravity, we
provide two fully general and explicit formulae for the change in the (refined)
index across the wall. The first, "Higgs branch" formula relies on Reineke's
results for invariants of quivers without oriented loops, specialized to the
Abelian case. The second, "Coulomb branch" formula results from evaluating the
symplectic volume of the classical phase space of multi-centered solutions by
localization. We provide extensive evidence that these new formulae agree with
each other and with the mathematical results of Kontsevich and Soibelman (KS)
and Joyce and Song (JS). The main physical insight behind our results is that
the Bose-Fermi statistics of individual black holes participating in the bound
state can be traded for Maxwell-Boltzmann statistics, provided the (integer)
index \Omega(\gamma) of the internal degrees of freedom carried by each black
hole is replaced by an effective (rational) index \bar\Omega(\gamma)=
\sum_{m|\gamma} \Omega(\gamma/m)/m^2. A similar map also exists for the refined
index. This observation provides a physical rationale for the appearance of the
rational Donaldson-Thomas invariant \bar\Omega(\gamma) in the works of KS and
JS. The simplicity of the wall crossing formula for rational invariants allows
us to generalize the "semi-primitive wall-crossing formula" to arbitrary decays
of the type \gamma\to M\gamma_1+N\gamma_2 with M=2,3.Comment: 71 pages, 1 figure; v3: changed normalisation of symplectic form
3.22, corrected 3.35, other cosmetic change
D3-instantons, Mock Theta Series and Twistors
The D-instanton corrected hypermultiplet moduli space of type II string
theory compactified on a Calabi-Yau threefold is known in the type IIA picture
to be determined in terms of the generalized Donaldson-Thomas invariants,
through a twistorial construction. At the same time, in the mirror type IIB
picture, and in the limit where only D3-D1-D(-1)-instanton corrections are
retained, it should carry an isometric action of the S-duality group SL(2,Z).
We prove that this is the case in the one-instanton approximation, by
constructing a holomorphic action of SL(2,Z) on the linearized twistor space.
Using the modular invariance of the D4-D2-D0 black hole partition function, we
show that the standard Darboux coordinates in twistor space have modular
anomalies controlled by period integrals of a Siegel-Narain theta series, which
can be canceled by a contact transformation generated by a holomorphic mock
theta series.Comment: 42 pages; discussion of isometries is amended; misprints correcte
Evidence for Duality of Conifold from Fundamental String
We study the spectrum of BPS D5-D3-F1 states in type IIB theory, which are
proposed to be dual to D4-D2-D0 states on the resolved conifold in type IIA
theory. We evaluate the BPS partition functions for all values of the moduli
parameter in the type IIB side, and find them completely agree with the results
in the type IIA side which was obtained by using Kontsevich-Soibelman's
wall-crossing formula. Our result is a quite strong evidence for string
dualities on the conifold.Comment: 24 pages, 13 figures, v2: typos corrected, v3: explanations about
wall-crossing improved and figures adde
The Gravity Dual of the Ising Model
We evaluate the partition function of three dimensional theories of gravity
in the quantum regime, where the AdS radius is Planck scale and the central
charge is of order one. The contribution from the AdS vacuum sector can - with
certain assumptions - be computed and equals the vacuum character of a minimal
model CFT. The torus partition function is given by a sum over geometries which
is finite and computable. For generic values of Newton's constant G and the AdS
radius L the result has no Hilbert space interpretation, but in certain cases
it agrees with the partition function of a known CFT. For example, the
partition function of pure Einstein gravity with G=3L equals that of the Ising
model, providing evidence that these theories are dual. We also present
somewhat weaker evidence that the 3-state and tricritical Potts models are dual
to pure higher spin theories of gravity based on SL(3) and E_6, respectively.Comment: 42 page
Note on New Massive Gravity in
In this note we study the properties of linearized gravitational excitations
in the new massive gravity theory in asymptotically spacetime and find
that there is also a critical point for the mass parameter at which massive
gravitons become massless as in topological massive gravity in .
However, at this critical point in the new massive gravity the energy of all
branches of highest weight gravitons vanish and the central charges also vanish
within the Brown-Henneaux boundary conditions. The new massive gravity in
asymptotically spacetime seems to be trivial at this critical point
under the Brown-Henneaux boundary conditions if the Brown-Henneaux boundary
conditions can be consistent with this theory. At this point, the boundary
conditions of log gravity may be preferred.Comment: v3 typos corrected, refs added, version to appear in JHE
BPS States, Refined Indices, and Quiver Invariants
For D=4 BPS state construction, counting, and wall-crossing thereof, quiver
quantum mechanics offers two alternative approaches, the Coulomb phase and the
Higgs phase, which sometimes produce inequivalent counting. The authors have
proposed, in arXiv:1205.6511, two conjectures on the precise relationship
between the two, with some supporting evidences. Higgs phase ground states are
naturally divided into the Intrinsic Higgs sector, which is insensitive to
wall-crossings and thus an invariant of quiver, plus a pulled-back ambient
cohomology, conjectured to be an one-to-one image of Coulomb phase ground
states. In this note, we show that these conjectures hold for all cyclic
quivers with Abelian nodes, and further explore angular momentum and R-charge
content of individual states. Along the way, we clarify how the protected spin
character of BPS states should be computed in the Higgs phase, and further
determine the entire Hodge structure of the Higgs phase cohomology. This shows
that, while the Coulomb phase states are classified by angular momentum, the
Intrinsic Higgs states are classified by R-symmetry.Comment: 51 pages, 5 figure
Three-dimensional AdS gravity and extremal CFTs at c=8m
We note that Witten's proposed duality between extremal c=24k CFTs and
three-dimensional anti-de Sitter gravity may possibly be extended to central
charges that are multiples of 8, for which extremal self-dual CFTs are known to
exist up to c=40. All CFTs of this type with central charge 24 or higher,
provided that they exist, have the required mass gap and may serve as candidate
duals to three-dimensional gravity at the corresponding values of the
cosmological constant. Here, we compute the genus one partition function of
these theories up to c=88, we give exact and approximate formulas for the
degeneracies of states, and we determine the genus two partition functions of
the theories up to c=40.Comment: 17 pages, harvmac; v2: references added, version accepted in JHE
A Farey tale for N=4 dyons
We study exponentially suppressed contributions to the degeneracies of
extremal black holes. Within Sen's quantum entropy function framework and
focusing on extremal black holes with an intermediate AdS3 region, we identify
an infinite family of semi-classical AdS2 geometries which can contribute
effects of order exp(S_0/c), where S_0 is the Bekenstein-Hawking-Wald entropy
and c is an integer greater than one. These solutions lift to the extremal
limit of the SL(2,Z) family of BTZ black holes familiar from the "black hole
Farey tail". We test this understanding in N=4 string vacua, where exact dyon
degeneracies are known to be given by Fourier coefficients of Siegel modular
forms. We relate the sum over poles in the Siegel upper half plane to the Farey
tail expansion, and derive a "Farey tale" expansion for the dyon partition
function. Mathematically, this provides a (formal) lift from Hilbert modular
forms to Siegel modular forms with a pole at the diagonal divisor.Comment: 31 page
Constructive Wall-Crossing and Seiberg-Witten
We outline a comprehensive and first-principle solution to the wall-crossing
problem in D=4 N=2 Seiberg-Witten theories. We start with a brief review of the
multi-centered nature of the typical BPS states and recall how the
wall-crossing problem thus becomes really a bound state formation/dissociation
problem. Low energy dynamics for arbitrary collections of dyons is derived,
from Seiberg-Witten theory, with the proximity to the so-called marginal
stability wall playing the role of the small expansion parameter. We find that,
surprisingly, the low energy dynamics of n+1 BPS dyons cannot
be consistently reduced to the classical moduli space, \CM, yet the index can
be phrased in terms of \CM. We also explain how an equivariant version of
this index computes the protected spin character of the underlying field
theory, where SO(3)_\CJ isometry of \CM turns out to be the diagonal
subgroup of spatial rotation and R-symmetry. The so-called
rational invariants, previously seen in the Kontsevich-Soibelman formalism of
wall-crossing, are shown to emerge naturally from the orbifolding projection
due to Bose/Fermi statistics.Comment: 25 pages, conference proceeding contribution for "Progress of Quantum
Field Theory and String Theory," Osaka, April 201
- …
