11 research outputs found

    Solitons in finite droplets of noncommutative Maxwell-Chern-Simons theory

    Full text link
    We find soliton solutions of the noncommutative Maxwell-Chern-Simons theory confined to a finite quantum Hall droplet. The solitons are exactly as hypothesized in \cite{Manu}. We also find new variations on these solitons. We compute their flux and their energies. The model we consider is directly related to the model proposed by Polychronakos\cite{Poly} and studied by Hellerman and Van Raamsdonk\cite{HvR} where it was shown that it is equivalent to the quantum Hall effect.Comment: 18 pages, 7 figures, minor corrections, version accepted for publication, this time really

    On plane wave and vortex-like solutions of noncommutative Maxwell-Chern-Simons theory

    Full text link
    We investigate the spectrum of the gauge theory with Chern-Simons term on the noncommutative plane, a modification of the description of the Quantum Hall fluid recently proposed by Susskind. We find a series of the noncommutative massive ``plane wave'' solutions with polarization dependent on the magnitude of the wave-vector. The mass of each branch is fixed by the quantization condition imposed on the coefficient of the noncommutative Chern-Simons term. For the radially symmetric ansatz a vortex-like solution is found and investigated. We derive a nonlinear difference equation describing these solutions and we find their asymptotic form. These excitations should be relevant in describing the Quantum Hall transitions between plateaus and the end transition to the Hall Insulator.Comment: 17 pages, LaTeX (JHEP), 1 figure, added references, version accepted to JHE

    Quasi-hole solutions in finite noncommutative Maxwell-Chern-Simons theory

    Get PDF
    We study Maxwell-Chern-Simons theory in 2 noncommutative spatial dimensions and 1 temporal dimension. We consider a finite matrix model obtained by adding a linear boundary field which takes into account boundary fluctuations. The pure Chern-Simons has been previously shown to be equivalent to the Laughlin description of the quantum Hall effect. With the addition of the Maxwell term, we find that there exists a rich spectrum of excitations including solitons with nontrivial "magnetic flux" and quasi-holes with nontrivial "charges", which we describe in this article. The magnetic flux corresponds to vorticity in the fluid fluctuations while the charges correspond to sources of fluid fluctuations. We find that the quasi-hole solutions exhibit a gap in the spectrum of allowed charge.Comment: 19+1 pages, 12 figures, colour graphics required, version publishe

    Tunneling decay of self-gravitating vortices

    Get PDF
    We investigate tunneling decay of false vortices in the presence of gravity, in which vortices are trapped in the false vacuum of a theory of scalar electrodynamics in three dimensions. The core of the vortex contains magnetic flux in the true vacuum, while outside the vortex is the appropriate topologically nontrivial false vacuum. We numerically obtain vortex solutions which are classically stable; however, they could decay via tunneling. To show this phenomenon, we construct the proper junction conditions in curved spacetime. We find that the tunneling exponent for the vortices is half that for Coleman-de Luccia bubbles and discuss possible future applications

    Tunneling decay of self-gravitating vortices

    No full text
    We investigate tunneling decay of false vortices in the presence of gravity, in which vortices are trapped in the false vacuum of a theory of scalar electrodynamics in three dimensions. The core of the vortex contains magnetic flux in the true vacuum, while outside the vortex is the appropriate topologically nontrivial false vacuum. We numerically obtain vortex solutions which are classically stable; however, they could decay via tunneling. To show this phenomenon, we construct the proper junction conditions in curved spacetime. We find that the tunneling exponent for the vortices is half that for Coleman-de Luccia bubbles and discuss possible future applications
    corecore