4,249 research outputs found

    On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems

    Get PDF
    Bi-Hamiltonian structures are of great importance in the theory of integrable Hamiltonian systems. The notion of compatibility of symplectic structures is a key aspect of bi-Hamiltonian systems. Because of this, a few different notions of compatibility have been introduced. In this paper we show that, under some additional assumptions, compatibility in the sense of Magri implies a notion of compatibility due to Fass`o and Ratiu, that we dub bi-affine compatibility. We present two proofs of this fact. The first one uses the uniqueness of the connection parallelizing all the Hamiltonian vector fields tangent to the leaves of a Lagrangian foliation. The second proof uses Darboux–Nijenhuis coordinates and symplectic connections

    A Counterexample to a Generalized Saari's Conjecture with a Continuum of Central Configurations

    Full text link
    In this paper we show that in the nn-body problem with harmonic potential one can find a continuum of central configurations for n=3n=3. Moreover we show a counterexample to an interpretation of Jerry Marsden Generalized Saari's conjecture. This will help to refine our understanding and formulation of the Generalized Saari's conjecture, and in turn it might provide insight in how to solve the classical Saari's conjecture for n4n\geq 4

    Four-body central configurations with one pair of opposite sides parallel

    Full text link
    We study four-body central configurations with one pair of opposite sides parallel. We use a novel constraint to write the central configuration equations in this special case, using distances as variables. We prove that, for a given ordering of the mutual distances, a trapezoidal central configuration must have a certain partial ordering of the masses. We also show that if opposite masses of a four-body trapezoidal central configuration are equal, then the configuration has a line of symmetry and it must be a kite. In contrast to the general four-body case, we show that if the two adjacent masses bounding the shortest side are equal, then the configuration must be an isosceles trapezoid, and the remaining two masses must also be equal

    Gravitational and Harmonic Oscillator Potentials on Surfaces of Revolution

    Get PDF
    In this paper, we consider the motion of a particle on a surface of revolution under the influence of a central force field. We prove that there are at most two analytic central potentials for which all the bounded, nonsingular orbits are closed and that there are exactly two on some surfaces with constant Gaussian curvature. The two potentials leading to closed orbits are suitable generalizations of the gravitational and harmonic oscillator potential. We also show that there could be surfaces admitting only one potential that leads to closed orbits. In this case, the potential is a generalized harmonic oscillator. In the special case of surfaces of revolution with constant Gaussian curvature, we prove a generalization of the well-known Bertrand theorem

    Design and optimization of fuel injection of a 50 kW micro turbogas

    Get PDF
    The present article deals with the design of a micro turbogas turbine suitable for on board applications, e.g., as a power generator on hybrid transit bus, characterized by a simple constructive approach. Deriving the machine layout from an existing KJ-66 aircraft model engine, the authors propose a theoretical design of a compact, lightweight turbogas turbine, by investigating the technical possibility and limits of the proposed design. In particular, a different combustion chamber layout has been proposed, and fuel adduction channels for different swirler designs have been simulated via ANSYS Fluent in order to identify a satisfactory fuel spreading. As a result, the complete characterization of the design parameters and geometries has been performed, and a series of RANS simulations has been used in order to identify an optimal swirler configuration

    A geometric characterisation of sensitivity analysis in monomial models

    Full text link
    Sensitivity analysis in probabilistic discrete graphical models is usually conducted by varying one probability value at a time and observing how this affects output probabilities of interest. When one probability is varied then others are proportionally covaried to respect the sum-to-one condition of probability laws. The choice of proportional covariation is justified by a variety of optimality conditions, under which the original and the varied distributions are as close as possible under different measures of closeness. For variations of more than one parameter at a time proportional covariation is justified in some special cases only. In this work, for the large class of discrete statistical models entertaining a regular monomial parametrisation, we demonstrate the optimality of newly defined proportional multi-way schemes with respect to an optimality criterion based on the notion of I-divergence. We demonstrate that there are varying parameters choices for which proportional covariation is not optimal and identify the sub-family of model distributions where the distance between the original distribution and the one where probabilities are covaried proportionally is minimum. This is shown by adopting a new formal, geometric characterization of sensitivity analysis in monomial models, which include a wide array of probabilistic graphical models. We also demonstrate the optimality of proportional covariation for multi-way analyses in Naive Bayes classifiers
    corecore