178 research outputs found
Study of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape and topographic features
We present results derived from four stellar occultations by the plutino
object (208996) 2003~AZ, detected at January 8, 2011 (single-chord
event), February 3, 2012 (multi-chord), December 2, 2013 (single-chord) and
November 15, 2014 (multi-chord). Our observations rule out an oblate spheroid
solution for 2003~AZ's shape. Instead, assuming hydrostatic equilibrium,
we find that a Jacobi triaxial solution with semi axes ~km % axis ratios and
, can better account for all our occultation observations.
Combining these dimensions with the rotation period of the body (6.75~h) and
the amplitude of its rotation light curve, we derive a density ~g~cm a geometric albedo . A grazing chord
observed during the 2014 occultation reveals a topographic feature along
2003~AZ's limb, that can be interpreted as an abrupt chasm of width
~km and depth ~km or a smooth depression of width ~km
and depth ~km (or an intermediate feature between those two extremes)
The Centurion 18 telescope of the Wise Observatory
We describe the second telescope of the Wise Observatory, a 0.46-m Centurion
18 (C18) installed in 2005, which enhances significantly the observing
possibilities. The telescope operates from a small dome and is equipped with a
large-format CCD camera. In the last two years this telescope was intensively
used in a variety of monitoring projects.
The operation of the C18 is now automatic, requiring only start-up at the
beginning of a night and close-down at dawn. The observations are mostly
performed remotely from the Tel Aviv campus or even from the observer's home.
The entire facility was erected for a component cost of about 70k$ and a labor
investment of a total of one man-year.
We describe three types of projects undertaken with this new facility: the
measurement of asteroid light variability with the purpose of determining
physical parameters and binarity, the following-up of transiting extrasolar
planets, and the study of AGN variability. The successful implementation of the
C18 demonstrates the viability of small telescopes in an age of huge
light-collectors, provided the operation of such facilities is very efficient.Comment: 16 pages, 13 figures, some figures quality was degraded, accepted for
publication in Astrophysics and Space Scienc
IPTF Search for An Optical Counterpart to Gravitational-Wave TransientT GW150914
The American Astronomical Society. All rights reserved..The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg2, after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. This end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves
MOA-2011-BLG-293Lb: A test of pure survey microlensing planet detections
Because of the development of large-format, wide-field cameras, microlensing
surveys are now able to monitor millions of stars with sufficient cadence to
detect planets. These new discoveries will span the full range of significance
levels including planetary signals too small to be distinguished from the
noise. At present, we do not understand where the threshold is for detecting
planets. MOA-2011-BLG-293Lb is the first planet to be published from the new
surveys, and it also has substantial followup observations. This planet is
robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host
mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is
s=0.548+/- 0.005 Einstein radii. However, due to the s-->s^{-1} degeneracy,
projected separations of s^{-1} are only marginally disfavored at Delta
chi^2=3. A Bayesian estimate of the host mass gives M_L = 0.43^{+0.27}_{-0.17}
M_Sun, with a sharp upper limit of M_L < 1.2 M_Sun from upper limits on the
lens flux. Hence, the planet mass is m_p=2.4^{+1.5}_{-0.9} M_Jup, and the
physical projected separation is either r_perp = ~1.0 AU or r_perp = ~3.4 AU.
We show that survey data alone predict this solution and are able to
characterize the planet, but the Delta chi^2 is much smaller (Delta chi^2~500)
than with the followup data. The Delta chi^2 for the survey data alone is
smaller than for any other securely detected planet. This event suggests a
means to probe the detection threshold, by analyzing a large sample of events
like MOA-2011-BLG-293, which have both followup data and high cadence survey
data, to provide a guide for the interpretation of pure survey microlensing
data.Comment: 29 pages, 6 figures, Replaced 7/3/12 with the version accepted to Ap
PTF11eon/SN2011dh: Discovery of a Type IIb Supernova From a Compact Progenitor in the Nearby Galaxy M51
On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the
Whirlpool Galaxy). We discovered this event using small telescopes equipped
with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and
rapidly confirmed it to be a Type II supernova. Our early light curve and
spectroscopy indicates that PTF11eon resulted from the explosion of a
relatively compact progenitor star as evidenced by the rapid shock-breakout
cooling seen in the light curve, the relatively low temperature in early-time
spectra and the prompt appearance of low-ionization spectral features. The
spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but
initial signs of He appear to be present. Assuming that He lines continue to
develop in the near future, this SN is likely a member of the cIIb (compact
IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than
that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor.
Our data imply that the object identified in pre-explosion Hubble Space
Telescope images at the SN location is possibly a companion to the progenitor
or a blended source, and not the progenitor star itself, as its radius (~10^13
cm) would be highly inconsistent with constraints from our post-explosion
photometric and spectroscopic data
Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material Around <10-Day-Old Type II Supernovae
The American Astronomical Society. All rights reserved.Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude MR = -18.2 belong to the FI or BF groups, and that all FI events peaked above MR = -17.6 mag, significantly brighter than average SNe II
Supernova Discoveries 2010-2011: Statistics and Trends
We have inspected all supernova discoveries reported during 2010 and 2011
(538 and 926 events, respectively). We examine the statistics of all discovered
objects, as well as those of the subset of spectroscopically-confirmed events.
In these two years we see the rise of wide-field non-targeted supernova surveys
to prominence, with the largest numbers of events reported by the CRTS and PTF
surveys (572 and 393 events in total respectively, contributing together 74% of
all reported discoveries in 2011), followed by the integrated contribution of
numerous amateurs (184 events). Among spectroscopically-confirmed events the
PTF (393 events) leads, followed by CRTS (170 events), and amateur discoveries
(144 events). Traditional galaxy-targeted surveys, such as LOSS and CHASE,
maintain a strong contribution (86 and 61 events, respectively) with high
spectroscopic completeness (~90% per cent). It is interesting to note that the
community managed to provide substantial spectroscopic follow-up for relatively
brighter amateur discoveries (=16.5 mag), but significant less help for
fainter (and much more numerous) events promptly released by the CRTS (=18.6
mag). Inspecting discovery magnitude and redshift distributions we find that
PS1 discoveries have similar properties (=21.6 mag, =0.23) to events
found in previous seasons by cosmology-oriented projects (e.g., SDSS-II), while
PTF (=19.2 mag, =0.095) and CRTS (=18.6 mag, =0.049) populate the
relatively unexplored phase space of faint SNe (>19 mag) in nearby galaxies
(mainly PTF), and events at 0.05<z<0.2 (CRTS and PTF). Examining the specific
question of reporting channels over the previous dozen years, we find that
traditional reports via CBET telegrams now account only for a minority of SN
discoveries.Comment: PASP, in pres
DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY
We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t)∝(t – t 0) n ) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure (~30, 000 km s–1 derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M ☉ and a large ((5-10) × 1051 erg) kinetic energy, the later being close to the regime of GRB-SN properties
PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January – April and August – December inclusive, and typically has allocations of 10 nights per month.
Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1).
Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13–18 Å between 3345−9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935−2.53 μm and resolutions 23−33 Å) and imaging with broadband JHKs filters.
Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012–2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ~15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this.
Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …
