4,056 research outputs found

    Hints towards the Emergent Nature of Gravity

    Full text link
    A possible way out of the conundrum of quantum gravity is the proposal that general relativity (GR) is not a fundamental theory but emerges from an underlying microscopic description. Despite recent interest in the emergent gravity program within the physics as well as the philosophy community, an assessment of the theoretical evidence for this idea is lacking at the moment. We intend to fill this gap in the literature by discussing the main arguments in favour of the hypothesis that the metric field and its dynamics are emergent. First, we distinguish between microstructure inspired from GR, such as through quantization or discretization, and microstructure that is not directly motivated from GR, such as strings, quantum bits or condensed matter fields. The emergent gravity approach can then be defined as the view that the metric field and its dynamics are derivable from the latter type of microstructure. Subsequently, we assess in how far the following properties of (semi-classical) GR are suggestive of underlying microstructure: (1) the metric's universal coupling to matter fields, (2) perturbative non-renormalizability, (3) black hole thermodynamics, and (4) the holographic principle. In the conclusion we formalize the general structure of the plausibility arguments put forward.Comment: 36 pages, v2: minor additions, references added. Journal version in Studies in History and Philosophy of Modern Physic

    The dynamic structure of clusters : characteristics and dimensions

    Get PDF
    Version of RecordThis paper will present the idea of clusters from Michael Porter’s perspective, and bringing together literature regarding the choice of location for industrial clusters, the final goal of this paper will be to create a dynamic system model of an industrial cluster and the factors affecting its location and thus, its evolution.Manus, A. (2007, October). The dynamic structure of clusters : characteristics and dimensions. Presented at the Academy of International Business U.S. Northeast Chapter Regional Meeting, Portsmouth, New Hampshire. Retrieved from http://academicarchive.snhu.ed

    The thin film microwave iris

    Get PDF
    Development of waveguide iris for microwave coupling applications using thin film techniques is discussed. Production process and installation of iris are described. Iris improves power transmission properties of waveguide window

    Emergence and Correspondence for String Theory Black Holes

    Get PDF
    This is one of a pair of papers that give a historical-\emph{cum}-philosophical analysis of the endeavour to understand black hole entropy as a statistical mechanical entropy obtained by counting string-theoretic microstates. Both papers focus on Andrew Strominger and Cumrun Vafa's ground-breaking 1996 calculation, which analysed the black hole in terms of D-branes. The first paper gives a conceptual analysis of the Strominger-Vafa argument, and of several research efforts that it engendered. In this paper, we assess whether the black hole should be considered as emergent from the D-brane system, particularly in light of the role that duality plays in the argument. We further identify uses of the quantum-to-classical correspondence principle in string theory discussions of black holes, and compare these to the heuristics of earlier efforts in theory construction, in particular those of the old quantum theory.Comment: 40 page

    Gravitational Thermodynamics of Causal Diamonds in (A)dS

    Get PDF
    The static patch of de Sitter spacetime and the Rindler wedge of Minkowski spacetime are causal diamonds admitting a true Killing field, and they behave as thermodynamic equilibrium states under gravitational perturbations. We explore the extension of this gravitational thermodynamics to all causal diamonds in maximally symmetric spacetimes. Although such diamonds generally admit only a conformal Killing vector, that seems in all respects to be sufficient. We establish a Smarr formula for such diamonds and a "first law" for variations to nearby solutions. The latter relates the variations of the bounding area, spatial volume of the maximal slice, cosmological constant, and matter Hamiltonian. The total Hamiltonian is the generator of evolution along the conformal Killing vector that preserves the diamond. To interpret the first law as a thermodynamic relation, it appears necessary to attribute a negative temperature to the diamond, as has been previously suggested for the special case of the static patch of de Sitter spacetime. With quantum corrections included, for small diamonds we recover the "entanglement equilibrium" result that the generalized entropy is stationary at the maximally symmetric vacuum at fixed volume, and we reformulate this as the stationarity of free conformal energy with the volume not fixed.Comment: v3: 64 pages, 6 appendices, 8 figures; matches published versio

    Logarithmic circuit with wide dynamic range

    Get PDF
    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage

    Weak-Field Gravity of Circular Cosmic Strings

    Get PDF
    A weak-field solution of Einstein's equations is constructed. It is generated by a circular cosmic string externally supported against collapse. The solution exhibits a conical singularity, and the corresponding deficit angle is the same as for a straight string of the same linear energy density. This confirms the deficit-angle assumption made in the Frolov-Israel-Unruh derivation of the metric describing a string loop at a moment of time symmetry.Comment: 15 page
    corecore