149 research outputs found
Atomic gallium laser spectroscopy with violet/blue diode lasers
We describe the operation of two GaN-based diode lasers for the laser
spectroscopy of gallium at 403 nm and 417 nm. Their use in an external cavity
configuration enabled the investigation of absorption spectroscopy in a gallium
hollow cathode. We have analyzed the Doppler broadened profiles accounting for
hyperfine and isotope structure and extracting both the temperature and
densities of the neutral atomic sample produced in the glow discharge. We have
also built a setup to produce a thermal atomic beam of gallium. Using the
GaN-based diode lasers we have studied the laser induced fluorescence and
hyperfine resolved spectra of gallium.Comment: 10 pages, 7 figure
A Step-by-step Guide to the Realisation of Advanced Optical Tweezers
Since the pioneering work of Arthur Ashkin, optical tweezers have become an
indispensable tool for contactless manipulation of micro- and nanoparticles.
Nowadays optical tweezers are employed in a myriad of applications
demonstrating the importance of these tools. While the basic principle of
optical tweezers is the use of a strongly focused laser beam to trap and
manipulate particles, ever more complex experimental set-ups are required in
order to perform novel and challenging experiments. With this article, we
provide a detailed step- by-step guide for the construction of advanced optical
manipulation systems. First, we explain how to build a single-beam optical
tweezers on a home-made microscope and how to calibrate it. Improving on this
design, we realize a holographic optical tweezers, which can manipulate
independently multiple particles and generate more sophisticated wavefronts
such as Laguerre-Gaussian beams. Finally, we explain how to implement a speckle
optical tweezers, which permit one to employ random speckle light fields for
deterministic optical manipulation.Comment: 29 pages, 7 figure
Optical cooling and trapping: introduction
The year 2015 is an auspicious year for optical science, as it is being celebrated as the International Year of Light and Light-Based Technologies. This focus issue of the journals Optics Express and Journal of the Optical Society of America B has been organized by the OSA Technical Group on Optical Cooling and Trapping to mark this occasion, and to highlight the most recent and exciting developments in the topics covered by the group. Together this joint focus issue features 33 papers, including both experimental and theoretical works, which span this wide range of activities
The nonlinear damping of Bose-Einstein condensate oscillations at ultra-low temperatures
We analyze the damping of the transverse breathing mode in an elongated trap
at ultralow temperatures. The damping occurs due to the parametric resonance
entailing the energy transfer to the longitudinal degrees of freedom. It is
found that the nonlinear coupling between the transverse and discrete
longitudinal modes can result in an anomalous behavior of the damping as a
function of time with the partially reversed pumping of the breathing mode. The
picture revealed explains the results observed in [16]
Drag of superfluid current in bilayer Bose systems
An effect of nondissipative drag of a superfluid flow in a system of two Bose
gases confined in two parallel quasi two-dimensional traps is studied. Using an
approach based on introduction of density and phase operators we compute the
drag current at zero and finite temperatures for arbitrary ratio of densities
of the particles in the adjacent layers. We demonstrate that in a system of two
ring-shape traps the "drag force" influences on the drag trap in the same way
as an external magnetic flux influences on a superconducting ring. It allows to
use the drag effect to control persistent current states in superfluids and
opens a possibility for implementing a Bose analog of the superconducting
Josephson flux qubit.Comment: 12 pages, 2 figures, new section is added, refs are adde
The transverse breathing mode of an elongated Bose-Einstein condensate
We study experimentally the transverse monopole mode of an elongated rubidium
condensate. Due to the scaling invariance of the non-linear Schr\"odinger
(Gross-Pitaevski) equation, the oscillation is monochromatic and sinusoidal at
short times, even under strong excitation. For ultra-low temperatures, the
quality factor can exceed 2000, where and
are the mode angular frequency and damping rate. This value is much
larger than any previously reported for other eigenmodes of a condensate. We
also present the temperature variation of and .Comment: 4 pages, 4 figures, submitted to PR
Laser optical separation of chiral molecules
The optical trapping of molecules with an off-resonant laser beam involves a forward-Rayleigh scattering mechanism. It is shown that discriminatory effects arise on irradiating chiral molecules with circularly polarized light; the complete representation requires ensemble-weighted averaging to account for the influence of the trapping beam on the distribution of molecular orientations. Results of general application enable comparisons to be drawn between the results for two limits of the input laser intensity. It emerges that, in a racemic mixture, there is a differential driving force whose effect, at high laser intensities, is to produce differing local concentrations of the two enantiomers
Collective excitations of trapped Bose condensates in the energy and time domains
A time-dependent method for calculating the collective excitation frequencies
and densities of a trapped, inhomogeneous Bose-Einstein condensate with
circulation is presented. The results are compared with time-independent
solutions of the Bogoliubov-deGennes equations. The method is based on
time-dependent linear-response theory combined with spectral analysis of
moments of the excitation modes of interest. The technique is straightforward
to apply, is extremely efficient in our implementation with parallel FFT
methods, and produces highly accurate results. The method is suitable for
general trap geometries, condensate flows and condensates permeated with vortex
structures.Comment: 6 pages, 3 figures small typos fixe
Superfluid to solid crossover in a rotating Bose-Einstein condensed gas
The properties of a rotating Bose-Einstein condensate confined in a prolate
cylindrically symmetric trap are explored both analytically and numerically. As
the rotation frequency increases, an ever greater number of vortices are
energetically favored. Though the cloud anisotropy and moment of inertia
approach those of a classical fluid at high frequencies, the observed vortex
density is consistently lower than the solid-body estimate. Furthermore, the
vortices are found to arrange themselves in highly regular triangular arrays,
with little distortion even near the condensate surface. These results are
shown to be a direct consequence of the inhomogeneous confining potential.Comment: 4+e pages, 5 embedded figures, revte
Electromagnetic trapping of chiral molecules: orientational effects of the irradiating beam
The photonic interaction generally responsible for the electromagnetic trapping of molecules is forward-Rayleigh scattering, a process that is mediated by transition electric dipoles connecting the ground electronic state and virtual excited states. Higher order electric and magnetic multipole contributions to the scattering amplitude are usually negligible. However, on consideration of chiral discrimination effects (in which an input light of left-handed circular polarization can present different observables compared to right-handed polarization, or molecules of opposite enantiomeric form respond differently to a set circular polarization), the mechanism must be extended to specifically accommodate transition magnetic dipoles. Moreover, it is important to account for the fact that chiral molecules are necessarily non-spherical, so that their interactions with a laser beam will have an orientational dependence. Using quantum electrodynamics, this article quantifies the extent of the energetic discrimination that arises when chiral molecules are optically trapped, placing particular emphasis on the orientational effects of the trapping beam. An in-depth description of the intricate ensemble-weighted method used to incorporate the latter is presented. It is thus shown that, when a mixture of molecular enantiomers is irradiated by a continuous beam of circularly polarized light, a difference arises in the relative rates of migration of each enantiomer in and out of the most intense regions of the beam. In consequence, optical trapping can be used as a means of achieving enantiomer separation
- …
