405 research outputs found
Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays
Background: Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions.
Methodology/Principal Findings: Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0-100 nM) correlated well with SRB (Rho>0.95) with similar IC50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho. 0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method.
Conclusions/Significance: The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different platforms applying only adapted matrix surface densities. The increased sensitivity however implies standardized experimental conditions to minimize technical-induced variance
Factors associated with the continuum of care of HIV infected patients in Belgium
BREACHinfo:eu-repo/semantics/nonPublishe
Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells
Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer
Photovoltaic restoration of sight with high visual acuity
Patients with retinal degeneration lose sight due to the gradual demise of photoreceptors. Electrical stimulation of surviving retinal neurons provides an alternative route for the delivery of visual information. We demonstrate that subretinal implants with 70-μm-wide photovoltaic pixels provide highly localized stimulation of retinal neurons in rats. The electrical receptive fields recorded in retinal ganglion cells were similar in size to the natural visual receptive fields. Similarly to normal vision, the retinal response to prosthetic stimulation exhibited flicker fusion at high frequencies, adaptation to static images and nonlinear spatial summation. In rats with retinal degeneration, these photovoltaic arrays elicited retinal responses with a spatial resolution of 64 ± 11 μm, corresponding to half of the normal visual acuity in healthy rats. The ease of implantation of these wireless and modular arrays, combined with their high resolution, opens the door to the functional restoration of sight in patients blinded by retinal degeneration
Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6
Long-Term Survival Associated with Direct Oral Feeding Following Minimally Invasive Esophagectomy:Results from a Randomized Controlled Trial (NUTRIENT II)
Advancements in perioperative care have improved postoperative morbidity and recovery after esophagectomy. The direct start of oral intake can also enhance short-term outcomes following minimally invasive Ivor Lewis esophagectomy (MIE-IL). Subsequently, short-term outcomes may affect long-term survival. This planned sub-study of the NUTRIENT II trial, a multicenter randomized controlled trial, investigated the long-term survival of direct versus delayed oral feeding following MIE-IL. The outcomes included 3- and 5-year overall survival (OS) and disease-free survival (DFS), and the influence of complications and caloric intake on OS. After excluding cases of 90-day mortality, 145 participants were analyzed. Of these, 63 patients (43.4%) received direct oral feeding. At 3 years, OS was significantly better in the direct oral feeding group (p = 0.027), but not at 5 years (p = 0.115). Moreover, 5-year DFS was significantly better in the direct oral feeding group (p = 0.047) and a trend towards improved DFS was shown at 3 years (p = 0.079). Postoperative complications and caloric intake on day 5 did not impact OS. The results of this study show a tendency of improved 3-year OS and 5-year DFS, suggesting a potential long-term survival benefit in patients receiving direct oral feeding after esophagectomy. However, the findings should be further explored in larger future trials.</p
Cochlear health in a cohort of cochlear implant users carrying the p.Pro51Ser variant in the COCH gene (DFNA9): A cross-sectional study evaluating the changes in the electrically evoked compound action potential (eCAP)
The present study focuses on DFNA9, an autosomal dominant disorder caused by pathogenic variants in the COCH gene. These mutations induce the formation of aggregates that are toxic to the fibrocytes in the extracellular matrix, ultimately leading to degeneration of spiral ganglion neurons (SGNs), which are crucial for transmitting auditory signals from the cochlea to the brain. An important tool for evaluating the function of the SGNs, which are the target cells of a cochlear implant (CI), is the electrically evoked compound action potential (eCAP). Therefore, the main objective is to evaluate the eCAP to describe the function of the SGNs and study cochlear health in CI patients with DFNA9. For this reason, we included 15 carriers of the p.Pro51Ser variant in the COCH gene who received a MED-EL CI (DFNA9 group) and 15 matched control CI subjects without DFNA9 to compare the impedances and subsequently the threshold, amplitude and slope of the eCAP amplitude growth function (AGF). These parameters were evaluated from intraoperative autoART recordings (MED-EL) during CI surgery. Matching of the two groups was based on sex, age at implantation, duration of deafness, and type of implant. The first results, regarding the difference in impedance between DFNA9 and non-DFNA9 patients, show a significant interaction between time and group in the middle and basal electrodes, indicating that electrode impedances were similar in the early phase after implantation between the two groups, but increased significantly more for the DFNA9 group up to one year after implantation. Secondly, the results show that the success rate (present or absent) to record eCAP responses is lower in the DNFA9 group: eCAPs were detectable in 75.5 % of the intraoperative measurements (145/192) in comparison to 96.9 % (186/192) in the group without DFNA9. ECAP absence in the DFNA9 group was observed across the whole electrode array, but more pronounced in the basal region (channels 11 and 12). Additionally, comparing the parameters of the AGF, the maximum eCAP amplitude was consistently smaller and the AGF slope consistently shallower for the DFNA9 group compared to the control group throughout the entirety of the electrode array. Finally, the eCAP thresholds in patients with DFNA9 were higher compared to those in the control patients for all cochlear locations. To our knowledge, this is the first study to investigate the eCAP measurements in patients with DFNA9. As proven in the literature, eCAP measures correlate well with the health and survival of SGC. This means that the results of our study predominantly suggest that DFNA9 leads to an even stronger reduction in excitability and neuronal health than seen in other causes of deafness
Towards Scientific Machine Learning for Granular Material Simulations: Challenges and Opportunities
Micro-scale mechanisms, such as inter-particle and particle-fluid interactions, govern the behaviour of granular systems. While particle-scale simulations provide detailed insights into these interactions, their computational cost is often prohibitive. At a recent Lorentz Center Workshop on “Machine Learning for Discrete Granular Media”, researchers explored how machine learning approaches can aid the development of constitutive laws and efficient data-driven surrogates for granular materials while also addressing uncertainty quantification. Attended by researchers from both the granular materials (GM) and machine learning (ML) communities, the workshop brought the ML community up to date with GM challenges. This position paper emerged from the workshop discussions. In this position paper, we define granular materials and identify seven key challenges that characterise their distinctive behaviour across various scales and regimes–ranging from gas-like to fluid-like and solid-like. Addressing these challenges is essential for developing robust and efficient models for the digital twinning of granular systems in various industrial applications. To showcase the potential of ML to the GM community, we present classical and emerging machine/deep learning techniques that have been, or could be, applied to granular materials. We reviewed sequence-based learning models for path-dependent constitutive behaviour, followed by encoder-decoder type models for representing high-dimensional data in reduced spaces. We then explore graph neural networks and recent advances in neural operator learning. The latter captures the emerging field evolution of interacting particles via efficient latent space representation. Lastly, we discuss model-order reduction and probabilistic learning techniques for high-dimensional parameterised systems, both of which are crucial for quantifying and incorporating uncertainties arising from physics-based and data-driven models. We present a typical workflow aimed at unifying data structures and modelling pipelines and guiding readers through the selection, training, and deployment of ML surrogates for granular material simulations. Finally, we illustrate the workflow’s practical use with two representative examples, focusing on granular materials in solid-like and fluid-like regimes
HIV-1 Genetic Diversity in Antenatal Cohort, Canada
Non-B HIV-1 was consistent with patients’ area of origin
Cost-effectiveness of exercise therapy versus general practitioner care for osteoarthritis of the hip: design of a randomised clinical trial
<p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is the most common joint disease, causing pain and functional impairments. According to international guidelines, exercise therapy has a short-term effect in reducing pain/functional impairments in knee OA and is therefore also generally recommended for hip OA. Because of its high prevalence and clinical implications, OA is associated with considerable (healthcare) costs. However, studies evaluating cost-effectiveness of common exercise therapy in hip OA are lacking. Therefore, this randomised controlled trial is designed to investigate the cost-effectiveness of exercise therapy in conjunction with the general practitioner's (GP) care, compared to GP care alone, for patients with hip OA.</p> <p>Methods/Design</p> <p>Patients aged ≥ 45 years with OA of the hip, who consulted the GP during the past year for hip complaints and who comply with the American College of Rheumatology criteria, are included. Patients are randomly assigned to either exercise therapy in addition to GP care, or to GP care alone. Exercise therapy consists of (maximally) 12 treatment sessions with a physiotherapist, and home exercises. These are followed by three additional treatment sessions in the 5th, 7th and 9th month after the first treatment session. GP care consists of usual care for hip OA, such as general advice or prescribing pain medication. Primary outcomes are hip pain and hip-related activity limitations (measured with the Hip disability Osteoarthritis Outcome Score [HOOS]), direct costs, and productivity costs (measured with the PROductivity and DISease Questionnaire). These parameters are measured at baseline, at 6 weeks, and at 3, 6, 9 and 12 months follow-up. To detect a 25% clinical difference in the HOOS pain score, with a power of 80% and an alpha 5%, 210 patients are required. Data are analysed according to the intention-to-treat principle. Effectiveness is evaluated using linear regression models with repeated measurements. An incremental cost-effectiveness analysis and an incremental cost-utility analysis will also be performed.</p> <p>Discussion</p> <p>The results of this trial will provide insight into the cost-effectiveness of adding exercise therapy to GPs' care in the treatment of OA of the hip. This trial is registered in the Dutch trial registry <url>http://www.trialregister.nl</url>: trial number <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1462">NTR1462</a>.</p
- …
