475 research outputs found
Training recurrent neural networks robust to incomplete data: application to Alzheimer's disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
machine learning task. Existing DPM algorithms neglect temporal dependencies
among measurements, make parametric assumptions about biomarker trajectories,
do not model multiple biomarkers jointly, and need an alignment of subjects'
trajectories. In this paper, recurrent neural networks (RNNs) are utilized to
address these issues. However, in many cases, longitudinal cohorts contain
incomplete data, which hinders the application of standard RNNs and requires a
pre-processing step such as imputation of the missing values. Instead, we
propose a generalized training rule for the most widely used RNN architecture,
long short-term memory (LSTM) networks, that can handle both missing predictor
and target values. The proposed LSTM algorithm is applied to model the
progression of Alzheimer's disease (AD) using six volumetric magnetic resonance
imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole
brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is
compared to standard LSTM networks with data imputation and a parametric,
regression-based DPM method. The results show that the proposed algorithm
achieves a significantly lower mean absolute error (MAE) than the alternatives
with p < 0.05 using Wilcoxon signed rank test in predicting values of almost
all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA)
classifier applied to the predicted biomarker values produces a significantly
larger AUC of 0.90 vs. at most 0.84 with p < 0.001 using McNemar's test for
clinical diagnosis of AD. Inspection of MAE curves as a function of the amount
of missing data reveals that the proposed LSTM algorithm achieves the best
performance up until more than 74% missing values. Finally, it is illustrated
how the method can successfully be applied to data with varying time intervals.Comment: arXiv admin note: substantial text overlap with arXiv:1808.0550
Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs
Segmenting vascular pathologies such as white matter lesions in Brain
magnetic resonance images (MRIs) require acquisition of multiple sequences such
as T1-weighted (T1-w) --on which lesions appear hypointense-- and fluid
attenuated inversion recovery (FLAIR) sequence --where lesions appear
hyperintense--. However, most of the existing retrospective datasets do not
consist of FLAIR sequences. Existing missing modality imputation methods
separate the process of imputation, and the process of segmentation. In this
paper, we propose a method to link both modality imputation and segmentation
using convolutional neural networks. We show that by jointly optimizing the
imputation network and the segmentation network, the method not only produces
more realistic synthetic FLAIR images from T1-w images, but also improves the
segmentation of WMH from T1-w images only.Comment: Conference on Medical Imaging with Deep Learning MIDL 201
Robust training of recurrent neural networks to handle missing data for disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
task in machine learning for healthcare that can provide clinicians with better
tools for diagnosis and monitoring of disease. Existing DPM algorithms neglect
temporal dependencies among measurements and make parametric assumptions about
biomarker trajectories. In addition, they do not model multiple biomarkers
jointly and need to align subjects' trajectories. In this paper, recurrent
neural networks (RNNs) are utilized to address these issues. However, in many
cases, longitudinal cohorts contain incomplete data, which hinders the
application of standard RNNs and requires a pre-processing step such as
imputation of the missing values. We, therefore, propose a generalized training
rule for the most widely used RNN architecture, long short-term memory (LSTM)
networks, that can handle missing values in both target and predictor
variables. This algorithm is applied for modeling the progression of
Alzheimer's disease (AD) using magnetic resonance imaging (MRI) biomarkers. The
results show that the proposed LSTM algorithm achieves a lower mean absolute
error for prediction of measurements across all considered MRI biomarkers
compared to using standard LSTM networks with data imputation or using a
regression-based DPM method. Moreover, applying linear discriminant analysis to
the biomarkers' values predicted by the proposed algorithm results in a larger
area under the receiver operating characteristic curve (AUC) for clinical
diagnosis of AD compared to the same alternatives, and the AUC is comparable to
state-of-the-art AUCs from a recent cross-sectional medical image
classification challenge. This paper shows that built-in handling of missing
values in LSTM network training paves the way for application of RNNs in
disease progression modeling.Comment: 9 pages, 1 figure, MIDL conferenc
Computational modelling of pathogenic protein spread in neurodegenerative diseases
Pathogenic protein accumulation and spread are fundamental principles of neurodegenerative diseases and ultimately account for the atrophy patterns that distinguish these diseases clinically. However, the biological mechanisms that link pathogenic proteins to specific neural network damage patterns have not been defined. We developed computational models for mechanisms of pathogenic protein accumulation, spread and toxic effects in an artificial neural network of cortical columns. By varying simulation parameters we assessed the effects of modelled mechanisms on network breakdown patterns. Our findings suggest that patterns of network breakdown and the convergence of patterns follow rules determined by particular protein parameters. These rules can account for empirical data on pathogenic protein spread in neural networks. This work provides a basis for understanding the effects of pathogenic proteins on neural circuits and predicting progression of neurodegeneration.</p
Driving Points Prediction For Abdominal Probabilistic Registration
Inter-patient abdominal registration has various applications, from pharmakinematic studies to anatomy modeling. Yet, it remains a challenging application due to the morphological heterogeneity and variability of the human abdomen. Among the various registration methods proposed for this task, probabilistic displacement registration models estimate displacement distribution for a subset of points by comparing feature vectors of points from the two images. These probabilistic models are informative and robust while allowing large displacements by design. As the displacement distributions are typically estimated on a subset of points (which we refer to as driving points), due to computational requirements, we propose in this work to learn a driving points predictor. Compared to previously proposed methods, the driving points predictor is optimized in an end-to-end fashion to infer driving points tailored for a specific registration pipeline. We evaluate the impact of our contribution on two different datasets corresponding to different modalities. Specifically, we compared the performances of 6 different probabilistic displacement registration models when using a driving points predictor or one of 2 other standard driving points selection methods. The proposed method improved performances in 11 out of 12 experiments
Machine Learning for Alzheimer’s Disease and Related Dementias
Dementia denotes the condition that affects people suffering from cognitive and behavioral impairments
due to brain damage. Common causes of dementia include Alzheimer’s disease, vascular dementia, or
frontotemporal dementia, among others. The onset of these pathologies often occurs at least a decade
before any clinical symptoms are perceived. Several biomarkers have been developed to gain a better insight
into disease progression, both in the prodromal and the symptomatic phases. Those markers are commonly
derived from genetic information, biofluid, medical images, or clinical and cognitive assessments. Information is nowadays also captured using smart devices to further understand how patients are affected. In the
last two to three decades, the research community has made a great effort to capture and share for research a
large amount of data from many sources. As a result, many approaches using machine learning have been
proposed in the scientific literature. Those include dedicated tools for data harmonization, extraction of
biomarkers that act as disease progression proxy, classification tools, or creation of focused modeling tools
that mimic and help predict disease progression. To date, however, very few methods have been translated
to clinical care, and many challenges still need addressing
Immediate ROI search for 3-D medical images
The objective of this work is a scalable, real-time, visual search engine for 3-D medical images, where a user is able to select a query Region Of Interest (ROI) and automatically detect the corresponding regions within all returned images.
We make three contributions: (i) we show that with appropriate off-line processing, images can be retrieved and ROIs registered in real time; (ii) we propose and evaluate a number of scalable exemplar-based image registration schemes; (iii) we propose a discriminative method for learning to rank the returned images based on the content of the ROI. The retrieval system is demonstrated on MRI data from the ADNI dataset, and it is shown that the learnt ranking function outperforms the baseline
- …
