8,110 research outputs found

    Treatment and valorization plants in materials recovery supply chain

    Get PDF
    Aim of industrial symbiosis is to create synergies between industries in order to exchange resources (by-products, water and energy) through geographic proximity and collaboration [1]. By optimizing resource flows in a “whole-system approach”, a minimization of dangerous emissions and of supply needs can be achieved. Resources exchanges are established to facilitate recycling and re-use of industrial waste using a commercial vehicle. Several paths can be identified in order to establish an industrial symbiosis network (Figure 1, left), in relation (i) to the life cycle phase (raw material, component, product) and (ii) to the nature (material, water, energy) of the resource flows to be exchanged. Sometimes by-products and/or waste of an industrial process have to be treated and valorized in order to become the raw materials for others. In particular, two main treatment processes can be identified: refurbishment/upgrade for re-use (Figure 1, center) and recycling for material recovery (Figure 1, right). A brief overview of technological and economic aspects is given, together with their relevance to industrial symbiosis

    ENVIRONMENTAL AND NATURAL RESOURCE POLICY AND THE OPTIMAL DISPERSION OF PROPERTY RIGHTS

    Get PDF
    Environmental policies generally address problems associated with ill-defined property rights. Our framework describes property rights "regimes" as functions of the degree of consolidation of rights to an asset and of the parties holding those rights. Efficient resource use occurs if welfare gains from regime switches offset endogenous transaction costs.Environmental Economics and Policy, Resource /Energy Economics and Policy,

    MARKETING FINANCIAL PRODUCTS WITHIN THE ACTIVITY OF INVESTMENT BANKS

    Get PDF
    A production system which produces a large number of items in many steps can be modelled as a continuous flow problem. The resulting hyperbolic partial differential equation (PDE) typically is nonlinear and nonlocal, modeling a factory whose cycle time depends nonlinearly on the work in progress. One of the few ways to influence the output of such a factory is by adjusting the start rate in a time dependent manner.We study two prototypical control problems for this case: i) demand tracking where we determine the start rate that generates an output rate which optimally tracks a given time dependent demand rate and ii) backlog tracking which optimally tracks the cumulative demand. The method is based on the formal adjoint method for constrained optimization, incorporating the hyperbolic PDE as a constraint of a nonlinear optimization problem. We show numerical results on optimal start rate profiles for steps in the demand rate and for periodically varying demand rates and discuss the influence of the nonlinearity of the cycle time on the limits of the reactivity of the production system. Differences between perishable and non-perishable demand (demand vs. backlog tracking) are highlighted

    On the diameter of an ideal

    Get PDF
    We begin the study of the notion of diameter of an ideal I of a polynomial ring S over a field, an invariant measuring the distance between the minimal primes of I. We provide large classes of Hirsch ideals, i.e. ideals with diameter not larger than the codimension, such as: quadratic radical ideals of codimension at most 4 and such that S/I is Gorenstein, or ideals admitting a square-free complete intersection initial ideal

    Le prove oggettive

    Get PDF
    Luigi Calonghi ha introdotto in Italia negli anni 50 le prove oggettive e ha proposto un metodo per la loro costruzione e validazione

    WETLANDS, WILDLIFE, AND WATER QUALITY: TARGETING AND TRADE OFFS

    Get PDF
    Cost-effective targeting of conservation activities has only recently been addressed by economists. Most work to date has focused on finding the best locations to set aside land for the protection of biodiversity. An economic approach to the problem, where biodiversity reserve networks are delineated to maximize the number of species protected subject to a budget constraint, has been shown to be much more cost-effective than the standard approach, where reserve networks are delineated subject to an area constraint, ignoring differences in costs across sites. This paper is among the first to use spatially explicit models of production functions for ecosystem services in an optimization framework for prioritizing sites for wetlands restoration. Tradeoffs between two classes of environmental benefits from wetlands restoration, habitat, and water quality were assessed in the Central Valley of California. Habitat benefits were estimated by a count regression model that relates breeding mallard abundances to the configuration of land use types in the study area, and water quality benefits were estimated by a spatially distributed model of nonpoint source pollution and nutrient attenuation in wetlands. Two decision scenarios were analyzed. In the first scenario the optimal configuration of restoration activity was determined for a small watershed, and in the second scenario sites were selected from those offered for enrollment in an easement program throughout the valley. The results reveal the potential for gains in effectiveness from spatial targeting, and they suggest that there will be substantial tradeoffs between environmental benefits. Maximizing habitat quality in the small watershed yielded a 34% increase in mallard abundance and a 3% decrease in nitrogen loads to the river. In contrast, maximizing water quality resulted in a 25% decrease in nitrogen loads and a 2% increase in mallard abundance. Qualitatively similar results were obtained when sites were selected from a set of offered sites throughout the valley, but the tradeoffs were not as severe. The results also suggest that at traditional funding levels the Wetlands Reserve Program in California could reduce nitrogen loads to rivers by approximately 29,000 kg and increase total mallard abundance in the breeding season by approximately 150 individuals throughout the Central Valley in a given year.Resource /Energy Economics and Policy,

    Flexible Conservation Measures on Working Land: What Challenges Lie Ahead?

    Get PDF
    From 1985 to 2002, most Federal conservation dollars going to farm operators have been to retire land from crop production. Yet most U.S. farmland (850 million acres) remains in active production. The Farm Security and Rural Investment (FSRI) Act of 2002 sharply increased conservation funding and earmarked most of the increase for working-land payment programs (WLPPs). The design and implementation of WLPPs will largely determine the extent to which environmental goals are achieved and whether they are cost effective. We simulate potential environmental gains as well as adjustments in agricultural production, price, and income associated with various WLPP features to illustrate tradeoffs arising from WLPP design and implementation. Competitive bidding with the use of environmental indices to rank producers for enrollment is most cost effective. Payments based on past conservation will help support farm incomes, but limit the amount of additional environmental benefit that can be generated under a fixed budget.Land Economics/Use,
    corecore