873 research outputs found
Fabrication of microcantilever-based IO grated waveguide sensors for detection of nano-displacements
We propose a novel and highly sensitive integrated read-out scheme, capable of detecting sub-nanometre deflections of a cantilever in close proximity to a grated waveguide structure. A very compact and stable sensor element can be realized by monolithically integrating a microcantilever structure with the grated waveguide (GWG), using conventional layer deposition and sacrificial layer etching techniques. The platform integrating a high quality GWG and a low initial bending cantilever has been fabricated and characterized
Social Dilemmas as Exchange Dilemmas
We develop a new paradigm to study social dilemmas, called exchange dilemmas. Exchange dilemmas arise from externalities of exchanges with third parties, and many real-life social dilemmas are more accurately modeled as exchange dilemmas rather than prisoner's dilemmas. Bulding on focusing and framing research we predict that defection is omnipresent in exchange dilemmas, which is corroborated in to very different experiments. Our results suggest that the fundamental problem of cooperation in many real-life social dilemmas may be more severe and harder to solve than suggested by traditional prisoner's dilemma research, due to the presence of third parties. Directions for future research are suggested, focusing on relations with third parties
Micromachined two dimensional resistor arrays for determination of gas parameters
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of measuring temperature distributions are the inherent compensation of heat losses to the support and the insensitivity to variations in the temperature coefficient of resistance
Highly sensitive micro coriolis mass flow sensor
We have realized a micromachined micro Coriolis mass flow sensor consisting of a silicon nitride resonant tube of 40 ?m diameter and 1.2 μm wall thickness. Actuation of the sensor in resonance mode is achieved by Lorentz forces. First measurements with both gas and liquid flow have demonstrated a resolution in the order of 10 milligram per hour. The sensor can simultaneously be used as a density sensor
Hydrogels By Supramolecular Crosslinking Of Terpyridine End Group Functionalized 8-arm Poly(Ethylene Glycol)
MEMS based hair flow-sensors as model systems for acoustic perception studies
Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets, have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors allowing for capacitive read-out. Capacitance versus voltage, frequency dependency and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model-system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplifica- tion) and their susceptibility to noise (stochastic resonance
Het kan in Westernieland:onderzoek naar kwaliteiten van de leefomgeving
Aan de Vereniging Dorpsbelangen Westernieland zijn de gezamelijke onderzoeksresultaten aangeboden van vijf onderzoeken, die gehouden zijn in Westernieland. Vijf studenten deden onderzoek naar respectievelijk ouderen, agrarische ondernemers, woningbezitters en kinderen in Westernieland. Ook is een breed uitgezet inwonersonderzoek uitgevoerd waarover een afzonderlijk onderzoeksrapport is verschenen (J. Rozema (2010). Het leeft in Westernieland. Inwonersonderzoek naar de leefbaarheid in Westernieland. Kenniscentrum Gebiedsontwikkeling NoorderRuimte, Hanzehogeschool Groningen)
Biomimetic, distributed micromechanical flow-sensing
We discuss current developments in biomimetic flow-sensors based on mechano-sensor as found e.g. on crickets and in the lateral line sensors of fish. Arrays of micromechanical acoustic-sensitive hair-sensors consisting of up to 1 mm long SU-8 hairs mounted on membranes forming variable capacitors for read-out are described. These sensors display great versatility by their arrayed nature, adaptivity and potential benefit of noise
Low-drift micro flow sensors
The emerging fields of micro total-analysis systems (micro-TAS), micro-reactors and bio-MEMS drives the need for further miniaturisation of sensors measuring quantities such as pressure, temperature and flow. The research described in this thesis concerns the development of low-drift micro flow sensors for accurate measurement of minute amount of liquid flow in the nl⋅min-1 range. Miniaturisation means that flow channel dimensions and flow rates become smaller. This requires thermally-isolated flow channels, where the complete fluid can be heated in order to obtain maximum sensitivity. A microchannel fabrication concept (Chap. 3) was developed, based on buried channel technology (BCT), allowing for easy fluidic interfacing and integration of transducer materials in close proximity to the fluid. This is achieved by the reliable fabrication of completely sealed microchannels directly below the substrate surface. The channel technology has found application in the fabrication of resonant flow sensors and low-drift micro flow sensors (Chap. 4-8) in the nl⋅min-1 range. Additionally, the technology has been extended by the possibility to integrate nanochannels using fluidic vias. This has been used in the fabrication of nano-nozzle electrospray emitters (Chap. 9). In current micromachined thermal flow sensors the elements for temperature sensing are made by thin films. The problem is that thin films reproduce poorly and that practically all materials properties are subject to drift. This translates directly into the accuracy of thermal micro flow sensors. In this thesis low-drift micro flow sensors were investigated, using two heaters and a thermopile in order to eliminate material drift (Chap. 5). The low offset drift of thermopiles has been exploited in a feedback loop controlling the dissipated powers in the heater resistors, minimising inevitable influences of resistance drift, mismatch of thin-film metal resistors and thermopile material drift. The control system cancels the flow-induced temperature difference across the thermopile by controlling a power difference between both heater resistors, thereby giving a measure of the flow rate. Alternatively, a sensor resistor and heat waves can be used to provide for a low offset-drift error signal (Chap. 8). It was demonstrated that material drift can largely be compensated. Sensitivity can be increased by designing flow sensors with a large number of integrated thermocouple junctions (Chap. 6), however it was observed that externally applied temperature gradients over the chip can still lead to drift of the sensor output signal. A special meandering microchannel layout was used to create a fully symmetrical flow sensor, where the arrangement of thermopile junctions has resulted in low-drift micro thermal flow sensors for liquids in the nl⋅min-1 range, with compensation for external temperature gradients (Chap. 7)
CLIMATE ANOMALIES AND PRIMARY PRODUCTION IN LAKE SUPERIOR
This dissertation supports the modeling of primary production in Lake Superior by offering site specific kinetics and algorithms developed from lab experiments performed on the natural phytoplankton assemblage of Lake Superior. Functions, developed for temperature, light and nutrient conditions and the maximum specific rate of primary production, were incorporated in a 1D specific primary production model and confirmed to published in-situ measured rates of primary production.
An extensive data set (supporting model calibration and confirmation), with a fine spatiotemporal resolution, was developed from field measurements taken bi-weekly during the sampling seasons of 2011, 2012 and 2014; considered to be meteorologically average, extremely warm and cold years, respectively. Samplings were taken at 11 stations along a 26 km transect extending lakeward from Michigan’s Keweenaw Peninsula covering the nearshore to offshore gradient. Measurements included: temperature, solar radiation, transparency, beam attenuation, chlorophyll-a fluorescence, colored dissolved organic matter, suspended solids and phosphorus and carbon constituents. Based on these measurements and application of the developed primary production model, patterns in primary production and driving forces (i.e. temperature, light and nutrients) are described in a seasonal, spatial, and interannual fashion.
The signal feature in 2011 was the development of a mid-summer “desert” in the offshore surface waters (a period of suboptimal temperatures coincident with a high degree of phosphorus limitation). The manifestation of the “summer desert”, however, was most extreme during the warm year and nonexistent during the cold year. Offshore primary production in all years manifested a subsurface maximum in the upper area of the metalimnion, distinctly above the deep chlorophyll maximum, with rates of production being highest In 2011 (~20 mg C m-3 d-1) followed by 2012 (~17 mg Cm-3 d-1) and lowest in 2014 (~12 mg Cm-3 d-1). Driven by variances in biomass and forcing conditions, offshore areal primary production manifested differences in seasonal patterns between years as well. In 2011 and 2014 a negatively skewed bell-shape pattern was observed, differing in magnitude and timing. The pattern in 2012 differed from these years in magnitude and timing, manifesting elevated production in April and decreased production in September. Greatest areal production in 2012 occurred in July and August (~320 mg Cm-2 d-1), in 2014 in August (~265 mg Cm-2 d-1) and in 2011 production was greatest in July (253 mg C m-2 d-1). Areal production in the summer of 1998, calculated for EPA’s 19 offshore stations in Lake Superior, manifested comparable rates and averaged 224 ± 90 mg C m-2·d-1.
Although in all years the development of the thermal bar (TB) occurred after the spring runoff event, an increase in chlorophyll-a concentration during the presence of the TB was observed in 2012. Rates of primary production during this period, however, decreased while the opposite occurred in 2014, signifying that changes in chlorophyll-a concentration should be interpreted carefully (especially if used to identify spring blooms).
The information presented in this work not only offers site specific kinetics, appropriate algorithms in support of primary production modeling and an extensive dataset supporting model calibration and confirmation, it also offers new insights into the dynamics of the Lake Superior ecosystem and the forces driving its function
- …
