36,400 research outputs found

    Diagnosis and management of treatment-refractory hypothyroidism: an expert consensus report

    Get PDF
    There is a frequently encountered subset of hypothyroid patients who are refractory to standard thyroid hormone replacement treatment and require unexpectedly high doses of levothyroxine. In addition to clinical situations where hypothyroid patients are non-compliant, or where there is the possibility of excipient-induced disease exacerbation (gluten/celiac disease), therapeutic failure may be due to impaired absorption of the administered drug. The common approach to managing patients with unusual thyroxine needs is to escalate the dose of levothyroxine until targeted TSH levels are achieved. This approach can increase the risk for prolonged exposure to supratherapeutic doses of levothyroxine, which increase the chances of adverse outcomes. Repeated adjustments of levothyroxine can also escalate the costs of treatment, as frequent office visits and laboratory tests are required to determine and maintain the desired dose. Clinicians should take a systematic approach to managing patients whom they suspect of having treatment-refractory hypothyroidism. This may include searching for, and adjusting, occult medical conditions and/or other factors that may affect the absorption of levothyroxine, before up-titrating the dose of traditional levothyroxine therapy. Depending on the underlying pathology, another approach that may be considered is to try alternative formulations of levothyroxine that are less susceptible to intolerance issues related to excipients, or, in some cases, to malabsorption. The early discovery of these factors via a thoughtful patient work-up may avoid unnecessary thyroid medication adjustments and their consequences for both patients and clinicians

    Electron density distribution and screening in rippled graphene sheets

    Get PDF
    Single-layer graphene sheets are typically characterized by long-wavelength corrugations (ripples) which can be shown to be at the origin of rather strong potentials with both scalar and vector components. We present an extensive microscopic study, based on a self-consistent Kohn-Sham-Dirac density-functional method, of the carrier density distribution in the presence of these ripple-induced external fields. We find that spatial density fluctuations are essentially controlled by the scalar component, especially in nearly-neutral graphene sheets, and that in-plane atomic displacements are as important as out-of-plane ones. The latter fact is at the origin of a complicated spatial distribution of electron-hole puddles which has no evident correlation with the out-of-plane topographic corrugations. In the range of parameters we have explored, exchange and correlation contributions to the Kohn-Sham potential seem to play a minor role.Comment: 13 pages, 13 figures, submitted. High-quality figures can be requested to the author

    Spectrum in the broken phase of a λϕ4\lambda\phi^4 theory

    Full text link
    We derive the spectrum in the broken phase of a λϕ4\lambda\phi^4 theory, in the limit λ\lambda\to\infty, showing that this goes as even integers of a renormalized mass in agreement with recent lattice computations.Comment: 4 pages, 1 figure. Accepted for publication in International Journal of Modern Physics

    The Max Noether Fundamental Theorem is Combinatorial

    Full text link
    In the present paper we give a reformulation of the Noether Fundamental Theorem for the special case where the three curves involved have the same degree. In this reformulation, the local Noether's Conditions are weakened. To do so we introduce the concept of Abstract Curve Combinatorics (ACC) which will be, in the context of plane curves, the analogue of matroids for hyperplane arrangements

    Electron-hole puddles in the absence of charged impurities

    Get PDF
    It is widely believed that carrier-density inhomogeneities ("electron-hole puddles") in single-layer graphene on a substrate like quartz are due to charged impurities located close to the graphene sheet. Here we demonstrate by using a Kohn-Sham-Dirac density-functional scheme that corrugations in a real sample are sufficient to determine electron-hole puddles on length scales that are larger than the spatial resolution of state-of-the-art scanning tunneling microscopy.Comment: 5 pages, 3 figures, published versio

    Green functions and nonlinear systems: Short time expansion

    Full text link
    We show that Green function methods can be straightforwardly applied to nonlinear equations appearing as the leading order of a short time expansion. Higher order corrections can be then computed giving a satisfactory agreement with numerical results. The relevance of these results relies on the possibility of fully exploiting a gradient expansion in both classical and quantum field theory granting the existence of a strong coupling expansion. Having a Green function in this regime in quantum field theory amounts to obtain the corresponding spectrum of the theory.Comment: 7 pages, 3 figures. Version accepted for publication in International Journal of Modern Physics

    Magnetic Susceptibility of the Quark Condensate and Polarization from Chiral Models

    Full text link
    We compute the magnetic susceptibility of the quark condensate and the polarization of quarks at zero temperature and in a uniform magnetic background. Our theoretical framework consists of two chiral models that allow to treat self-consistently the spontaneous breaking of chiral symmetry: the linear σ\sigma-model coupled to quarks, dubbed quark-meson model, and the Nambu-Jona-Lasinio model. We also perform analytic estimates of the same quantities within the renormalized quark-meson model, both in the regimes of weak and strong fields. Our numerical results are in agreement with the recent literature; moreover, we confirm previous Lattice findings, related to the saturation of the polarization at large fields.Comment: 13 pages, 4 figure
    corecore