90,219 research outputs found
Gravitational Rutherford scattering and Keplerian orbits for electrically charged bodies in heterotic string theory
Properties of the motion of electrically charged particles in the background
of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black hole is
presented in this paper. Radial and angular motion are studied analytically for
different values of the fundamental parameter. Therefore, gravitational
Rutherford scattering and Keplerian orbits are analysed in detail. Finally,
this paper complements previous work by Fernando for null geodesics (Phys. Rev.
D 85: 024033, 2012), Olivares & Villanueva (Eur. Phys. J. C 73: 2659, 2013) and
Blaga (Automat. Comp. Appl. Math. 22, 41 (2013); Serb. Astron. J. 190, 41
(2015)) for time-like geodesics.Comment: 11 pages, 12 figure
Influence of homology and node-age on the growth of protein-protein interaction networks
Proteins participating in a protein-protein interaction network can be
grouped into homology classes following their common ancestry. Proteins added
to the network correspond to genes added to the classes, so that the dynamics
of the two objects are intrinsically linked. Here, we first introduce a
statistical model describing the joint growth of the network and the
partitioning of nodes into classes, which is studied through a combined
mean-field and simulation approach. We then employ this unified framework to
address the specific issue of the age dependence of protein interactions,
through the definition of three different node wiring/divergence schemes.
Comparison with empirical data indicates that an age-dependent divergence move
is necessary in order to reproduce the basic topological observables together
with the age correlation between interacting nodes visible in empirical data.
We also discuss the possibility of nontrivial joint partition/topology
observables.Comment: 14 pages, 7 figures [accepted for publication in PRE
Improved entropic uncertainty relations and information exclusion relations
The uncertainty principle can be expressed in entropic terms, also taking
into account the role of entanglement in reducing uncertainty. The information
exclusion principle bounds instead the correlations that can exist between the
outcomes of incompatible measurements on one physical system, and a second
reference system. We provide a more stringent formulation of both the
uncertainty principle and the information exclusion principle, with direct
applications for, e.g., the security analysis of quantum key distribution,
entanglement estimation, and quantum communication. We also highlight a
fundamental distinction between the complementarity of observables in terms of
uncertainty and in terms of information.Comment: 11 pages, 1 figure, v2: close to published versio
Mixing across fluid interfaces compressed by convective flow in porous media
We study the mixing in the presence of convective flow in a porous medium.
Convection is characterized by the formation of vortices and stagnation points,
where the fluid interface is stretched and compressed enhancing mixing. We
analyze the behavior of the mixing dynamics in different scenarios using an
interface deformation model. We show that the scalar dissipation rate, which is
related to the dissolution fluxes, is controlled by interfacial processes,
specifically the equilibrium between interface compression and diffusion, which
depends on the flow field configuration. We consider different scenarios of
increasing complexity. First, we analyze a double-gyre synthetic velocity
field. Second, a Rayleigh-B\'enard instability (the Horton-Rogers-Lapwood
problem), in which stagnation points are located at a fixed interface. This
system experiences a transition from a diffusion controlled mixing to a chaotic
convection as the Rayleigh number increases. Finally, a Rayleigh-Taylor
instability with a moving interface, in which mixing undergoes three different
regimes: diffusive, convection dominated, and convection shutdown. The
interface compression model correctly predicts the behavior of the systems. It
shows how the dependency of the compression rate on diffusion explains the
change in the scaling behavior of the scalar dissipation rate. The model
indicates that the interaction between stagnation points and the correlation
structure of the velocity field is also responsible for the transition between
regimes. We also show the difference in behavior between the dissolution fluxes
and the mixing state of the systems. We observe that while the dissolution flux
decreases with the Rayleigh number, the system becomes more homogeneous. That
is, mixing is enhanced by reducing diffusion. This observation is explained by
the effect of the instability patterns
Massive neutral particles on heterotic string theory
The motion of massive particles in the background of a charged black hole in
heterotic string theory, which is characterized by a parameter , is
studied in detail in this paper. Since it is possible to write this space-time
in the Einstein frame, we perform a quantitative analysis of the time-like
geodesics by means of the standard Lagrange procedure. Thus, we obtain and
solve a set of differential equations and then we describe the orbits in terms
of the elliptic -Weierstra{\ss} function. Also, by making an elementary
derivation developed by Cornbleet (Am. J. Phys. \textbf{61} 7, (1993) 650 -
651) we obtain the correction to the angle of advance of perihelion to first
order in , and thus, by comparing with Mercury's data we give an
estimation for the value of this parameter, which yields an {\it heterotic
solar charge} .
Therefore, in addition to the study on null geodesics performed by Fernando
(Phys. Rev. D {\bf 85}, (2012) 024033), this work completes the geodesic
structure for this class of space-time.Comment: 12 pages, 8 figures. Accepted for publication on EPJ
Is it Physically Sound to Add a Topologically Massive Term to Three-Dimensional Massive Electromagnetic or Gravitational Models ?
The addition of a topologically massive term to an admittedly non-unitary
three-dimensional massive model, be it an electromagnetic system or a
gravitational one, does not cure its non-unitarity. What about the enlargement
of avowedly unitary massive models by way of a topologically massive term? The
electromagnetic models remain unitary after the topological augmentation but,
surprisingly enough, the gravitational ones have their unitarity spoiled. Here
we analyze these issues and present the explanation why unitary massive
gravitational models, unlike unitary massive electromagnetic ones, cannot
coexist from the viewpoint of unitarity with topologically massive terms. We
also discuss the novel features of the three-term effective field models that
are gauge-invariant
- …
