3,624 research outputs found
Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields
The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated
Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host
Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV
Identification and characterization of a novel non-structural protein of bluetongue virus
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell
Probabilistic movement primitives for coordination of multiple human–robot collaborative tasks
This paper proposes an interaction learning method for collaborative and assistive robots based on movement primitives. The method allows for both action recognition and human–robot movement coordination. It uses imitation learning to construct a mixture model of human–robot interaction primitives. This probabilistic model allows the assistive trajectory of the robot to be inferred from human observations. The method is scalable in relation to the number of tasks and can learn nonlinear correlations between the trajectories that describe the human–robot interaction. We evaluated the method experimentally with a lightweight robot arm in a variety of assistive scenarios, including the coordinated handover of a bottle to a human, and the collaborative assembly of a toolbox. Potential applications of the method are personal caregiver robots, control of intelligent prosthetic devices, and robot coworkers in factories
Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach
Cloud Computing enables the construction and the provisioning of virtualized service-based applications in a simple and cost effective outsourcing to dynamic service environments. Cloud Federations envisage a distributed, heterogeneous environment consisting of various cloud infrastructures by aggregating different IaaS provider capabilities coming from both the commercial and the academic area. In this paper, we introduce a federated cloud management solution that operates the federation through utilizing cloud-brokers for various IaaS providers. In order to enable an enhanced provider selection and inter-cloud service executions, an integrated monitoring approach is proposed which is capable of measuring the availability and reliability of the provisioned services in different providers. To this end, a minimal metric monitoring service has been designed and used together with a service monitoring solution to measure cloud performance. The transparent and cost effective operation on commercial clouds and the capability to simultaneously monitor both private and public clouds were the major design goals of this integrated cloud monitoring approach. Finally, the evaluation of our proposed solution is presented on different private IaaS systems participating in federations. © 2013 Springer Science+Business Media Dordrecht
GMOs: Non-Health Issues
The controversy over genetically modified [GM] organisms is often framed in terms of possible hazards for human health. Articles in a previous volume of this *Encyclopedia* give a general overview of GM crops [@Mulvaney2014] and specifically examine human health [@Nordgard2014] and labeling [@Bruton2014] issues surrounding GM organisms. This article explores several other aspects of the controversy: environmental concerns, political and legal disputes, and the aim of "feeding the world" and promoting food security. Rather than discussing abstract, hypothetical GM organisms, this article explores the consequences of the GM organisms that have actually been deployed in the particular contexts that they have been deployed, on the belief that there is little point in discussing GM organisms in an idealized or context-independent way
Mapping transcription mechanisms from multimodal genomic data
Background
Identification of expression quantitative trait loci (eQTLs) is an emerging area in genomic study. The task requires an integrated analysis of genome-wide single nucleotide polymorphism (SNP) data and gene expression data, raising a new computational challenge due to the tremendous size of data.
Results
We develop a method to identify eQTLs. The method represents eQTLs as information flux between genetic variants and transcripts. We use information theory to simultaneously interrogate SNP and gene expression data, resulting in a Transcriptional Information Map (TIM) which captures the network of transcriptional information that links genetic variations, gene expression and regulatory mechanisms. These maps are able to identify both cis- and trans- regulating eQTLs. The application on a dataset of leukemia patients identifies eQTLs in the regions of the GART, PCP4, DSCAM, and RIPK4 genes that regulate ADAMTS1, a known leukemia correlate.
Conclusions
The information theory approach presented in this paper is able to infer the dependence networks between SNPs and transcripts, which in turn can identify cis- and trans-eQTLs. The application of our method to the leukemia study explains how genetic variants and gene expression are linked to leukemia.National Human Genome Research Institute (U.S.) (R01HG003354)National Institute of Allergy and Infectious Diseases (U.S.) (U19 AI067854-05)National Heart, Lung, and Blood Institute (grant T32 HL007427-28)National Institutes of Health (U.S.) (grant K99 LM009826
IL28B genotype is associated with cirrhosis or transition to cirrhosis in treatment-naive patients with chronic HCV genotype 1 infection: the international observational Gen-C study
Background and purpose: Contradictory data exist on the association between host interleukin-28B (IL28B) rs12979860 genotype and liver fibrosis in patients with chronic hepatitis C (CHC). This large, international, observational study (NCT01675427/MV25600) investigated relationships between IL28B rs12979860 genotype and liver fibrosis stage in CHC patients.
Methods: A total of 3003 adult, treatment-naive CHC patients were enrolled into the study. Patients made one study visit to provide a blood sample for genotyping; other data were obtained from medical records.
Results: 2916 patients comprised the analysis population; the majority were enrolled in Europe (n = 2119), were Caucasian (n = 2582) and had hepatitis C virus (HCV) genotype (G) 1 infection (n = 1702) (G2 = 323, G3 = 574, G4 = 260). Distribution of IL28B genotypes varied according to region of enrolment, patient ethnicity and HCV genotype. A significant association was observed between increasing number of IL28B T alleles and the prevalence of cirrhosis/transition to cirrhosis (based on biopsy or non-invasive assessments) in G1-infected patients (CC = 22.2% [111/499], CT = 27.5% [255/928], TT = 32.3% [87/269]; p = 0.0018). The association was significant in the large subgroup of European Caucasian G1 patients (n = 1245) but not in the smaller Asian (n = 25), Latin American (n = 137) or Middle Eastern (n = 289) G1 subgroups. IL28B genotype was not associated with liver fibrosis stage in patients with HCV G2, G3 or G4 infection.
Conclusion: This large, international study found that IL28B rs12979860 genotype is significantly associated with liver fibrosis stage in CHC patients with HCV G1 infection. This association was evident in European Caucasians but not in G1-infected patients from Asia, Latin America or the Middle EastF. Hoffmann-La Roche Ltd, Basel, Switzerlan
Is beer a source of prebiotics?
Beer contains low-molecular-weight β-linked oligosaccharides that originate from the degradation of β-glucan in the barley cell wall during malting and mashing. Over 90% of these oligosaccharides contain three or four glucosyl units. They remain intact through a static oral, gastric and small intestinal in vitro human digestive system model, indicating that they should be available to beneficial organisms known to be present in the human large intestine. Several intestine-associated Lactobacillus strains were shown to be capable of growth on these β-linked oligosaccharides, thereby leading us to tentatively propose that these compounds may represent prebiotics. Copyright © 2017 The Institute of Brewing & Distilling
- …
