215 research outputs found
Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons
Two-dimensional lattices of coupled micropillars etched in a planar
semiconductor microcavity offer a workbench to engineer the band structure of
polaritons. We report experimental studies of honeycomb lattices where the
polariton low-energy dispersion is analogous to that of electrons in graphene.
Using energy-resolved photoluminescence we directly observe Dirac cones, around
which the dynamics of polaritons is described by the Dirac equation for
massless particles. At higher energies, we observe p orbital bands, one of them
with the nondispersive character of a flatband. The realization of this
structure which holds massless, massive and infinitely massive particles opens
the route towards studies of the interplay of dispersion, interactions, and
frustration in a novel and controlled environment
Photon correlation in GaAs self-assembled quantum dots
We report on photon coincidence measurement in a single GaAs self-assembled
quantum dot (QD) using a pulsed excitation light source. At low excitation,
when a neutral exciton line was present in the photoluminescence (PL) spectrum,
we observed nearly perfect single photon emission from an isolated QD at 670 nm
wavelength. For higher excitation, multiple PL lines appeared on the spectra,
reflecting the formation of exciton complexes. Cross-correlation functions
between these lines showed either bunching or antibunching behavior, depending
on whether the relevant emission was from a biexciton cascade or a charged
exciton recombination.Comment: 5 pages, 3 figure
One-dimensional microcavity-based optical parametric oscillator: generation of balanced twin beams in strong and weak coupling regime
International audienceWe report on a detailed experimental investigation of interbranch parametric scattering processes in onedimensional semiconductor microcavities. Band dispersion and corresponding far field emission patterns are studied by polarization resolved and power dependence measurements under resonant and non-resonant excitation at normal incidence. We demonstrate the realization of optical parametric oscillation of balanced twin beams which are degenerate in energy and split in momentum space. This achievement is shown for both the strong and the weak coupling regime highlighting the versatility of this peculiar microcavity system
Nanoporous Ge thin film production combining Ge sputtering and dopant implantation
International audienceIn this work a novel process allowing for the production of nanoporous Ge thin films is presented. This process uses the combination of two techniques: Ge sputtering on SiO 2 and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO 2 , (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the Ge film at different process steps under different postannealing conditions. For the same postannealing conditions, the Ge film topology was shown to be similar for different implantation doses and different dopants. However, the film topology can be controlled by adjusting the postannealing conditions
Discretized disorder in planar semiconductor microcavities: Mosaicity effect on resonant Rayleigh scattering and optical parametric oscillation
International audienceThe features of resonant secondary emission by two-dimensional multiple semiconductor microcavities are experimentally investigated. We show that, under normal laser incidence, static disorder determines the final states of the resonant Rayleigh scattering in the high symmetry axes of the GaAs matrix. Scanning transmission electron microscopy reveals a small dislocation density at the layers interfaces and step formation due to strain accumulation and relaxation ruled by the symmetry of the underlying GaAs matrix: this mosaicity effects, a common feature in thick and strained crystals, determines the scattering channels by selecting the crystallographic discretized directions. Moreover, interband optical parametric oscillation of intensity balanced signal and idler beams takes place in the directions selected by the photonic disorder in the distributed Bragg reflector
Photoneutralization and slow capture of carriers in quantum dots probed by resonant excitation spectroscopy
International audienceWe investigate experimentally and theoretically the resonant emission of single InAs/GaAs quantum dots in a planar microcavity. Due to the presence of at least one residual charge in the quantum dots, the resonant excitation of the neutral exciton is blocked. The influence of the residual doping on the initial quantum dots charge state is analyzed, and the resonant emission quenching is interpreted as a Coulomb blockade effect. The use of an additional non-resonant laser in a specific low power regime leads to the carrier draining in quantum dots and allows an efficient optical gating of the exciton resonant emission. A detailed population evolution model, developed to describe the carrier draining and the optical gate effect, perfectly fits the experimental results in the steady state and dynamical regimes of the optical gate with a single set of parameters. We deduce that ultra-slow Auger- and phonon-assisted capture processes govern the carrier draining in quantum dots with relaxation times in the 1 - 100 microsecond range. We conclude that the optical gate acts as a very sensitive probe of the quantum dots population relaxation in an unprecedented slow-capture regime
Germanium-based nearly hyperuniform nanoarchitectures by ion beam impact
We address the fabrication of nano-architectures by impacting thin layers of amorphous Ge deposited on SiO2 with a Ga+ ion beam and investigate the structural and optical properties of the resulting patterns. By adjusting beam current and scanning parameters, different classes of nano-architectures can be formed, from elongated and periodic structures to disordered ones with a footprint of a few tens of nm. The latter disordered case features a significant suppression of large length scale fluctuations that are conventionally observed in ordered systems and exhibits a nearly hyperuniform character, as shown by the analysis of the spectral density at small wave vectors. It deviates from conventional random fields as accounted for by the analysis of Minkowski functionals. A proof of concept for potential applications is given by showing peculiar reflection properties of the resulting nano-structured films that exhibit colorization and enhanced light absorption with respect to the flat Ge layer counterpart (up to one order of magnitude at some wavelength). This fabrication method for disordered hyperuniform structures does not depend on the beam size. Being ion beam technology widely adopted in semiconductor foundries over 200 mm wafers, our work provides a viable pathway for obtaining disordered, nearly-hyperuniform materials by self-assembly with a footprint of tens of nanometers for electronic and photonic devices, energy storage and sensing
Light scattering features induced by residual layers in dielectric dewetted nanoparticles
All-dielectric, sub-micrometric particles obtained through solid state dewetting of thin SiGe-films have been shown to support Mie resonances together with a high-quality monocrystalline composition and atomically smooth facets. Recently, a precise study on the impact given by the effective complex morphology of a SiGe dewetted nanoparticle to the Mie scattering properties has been provided and carried on through a novel experimental technique called Dark-field Scanning Optical Microscopy. In this work, by means of the same experimental technique and numerical simulations of light scattering, we show how the presence of a pedestal enriched with silicon placed under the SiGe-nanoparticle results in a sharp peak at high energy in the total scattering cross-section. Exploiting a tilted illumination to redirect scattered light, we are able to discriminate the spatial localization of the pedestal-induced resonance. Our results contribute to extending the practical implementations of dewetted Mie resonators in the field of light scattering directionality, sensing applications and show further engineering options beyond the simple isolated-island case
- …
