1,751 research outputs found

    Time dependent couplings in the dark sector: from background evolution to nonlinear structure formation

    Full text link
    We present a complete numerical study of cosmological models with a time dependent coupling between the dark energy component driving the present accelerated expansion of the Universe and the Cold Dark Matter (CDM) fluid. Depending on the functional form of the coupling strength, these models show a range of possible intermediate behaviors between the standard LCDM background evolution and the widely studied case of interacting dark energy models with a constant coupling. These different background evolutions play a crucial role in the growth of cosmic structures, and determine strikingly different effects of the coupling on the internal dynamics of nonlinear objects. By means of a suitable modification of the cosmological N-body code GADGET-2 we have performed a series of high-resolution N-body simulations of structure formation in the context of interacting dark energy models with variable couplings. Depending on the type of background evolution, the halo density profiles are found to be either less or more concentrated with respect to LCDM, contrarily to what happens for constant coupling models where concentrations can only decrease. However, for some specific choice of the interaction function the reduction of halo concentrations can be larger than in constant coupling scenarios. In general, we find that time dependent interactions between dark energy and CDM can in some cases determine stronger effects on structure formation as compared to the constant coupling case, with a significantly weaker impact on the background evolution of the Universe, and might therefore provide a more viable possibility to alleviate the tensions between observations and the LCDM model on small scales than the constant coupling scenario. [Abridged]Comment: 27 pages, 17 figures, 3 tables. Minor revisions. MNRAS accepte

    The nonlinear evolution of large scale structures in Growing Neutrino cosmologies

    Full text link
    We present the results of the first N-body simulations of the Growing Neutrino scenario, as recently discussed in Baldi et al. (2011). Our results have shown for the first time how neutrino lumps forming in the context of Growing Neutrino cosmologies are expected to pulsate as a consequence of the rapid oscillations of the dark energy scalar field. We have also computed for the first time a realistic statistical distribution of neutrino halos and determined their impact on the underlying Cold Dark Matter structures.Comment: 4 pages, 2 Figures. To appear in the Proceedings Volume of the Conference "Advances in computational astrophysics", Cefalu' (Italy), 13-17 June 201

    Increasing Physical Layer Security through Scrambled Codes and ARQ

    Full text link
    We develop the proposal of non-systematic channel codes on the AWGN wire-tap channel. Such coding technique, based on scrambling, achieves high transmission security with a small degradation of the eavesdropper's channel with respect to the legitimate receiver's channel. In this paper, we show that, by implementing scrambling and descrambling on blocks of concatenated frames, rather than on single frames, the channel degradation needed is further reduced. The usage of concatenated scrambling allows to achieve security also when both receivers experience the same channel quality. However, in this case, the introduction of an ARQ protocol with authentication is needed.Comment: 5 pages, 4 figures; Proc. IEEE ICC 2011, Kyoto, Japan, 5-9 June 201

    A class of punctured simplex codes which are proper for error detection

    Full text link
    Binary linear [n,k] codes that are proper for error detection are known for many combinations of n and k. For the remaining combinations, existence of proper codes is conjectured. In this paper, a particular class of [n,k] codes is studied in detail. In particular, it is shown that these codes are proper for many combinations of n and k which were previously unsettled

    A Physical Layer Secured Key Distribution Technique for IEEE 802.11g Wireless Networks

    Full text link
    Key distribution and renewing in wireless local area networks is a crucial issue to guarantee that unauthorized users are prevented from accessing the network. In this paper, we propose a technique for allowing an automatic bootstrap and periodic renewing of the network key by exploiting physical layer security principles, that is, the inherent differences among transmission channels. The proposed technique is based on scrambling of groups of consecutive packets and does not need the use of an initial authentication nor automatic repeat request protocols. We present a modification of the scrambling circuits included in the IEEE 802.11g standard which allows for a suitable error propagation at the unauthorized receiver, thus achieving physical layer security.Comment: 9 pages, 7 figures. Accepted for publication in IEEE Wireless Communications Letters. Copyright transferred to IEE

    Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes

    Full text link
    We consider the framework of the McEliece cryptosystem based on LDPC codes, which is a promising post-quantum alternative to classical public key cryptosystems. The use of LDPC codes in this context allows to achieve good security levels with very compact keys, which is an important advantage over the classical McEliece cryptosystem based on Goppa codes. However, only regular LDPC codes have been considered up to now, while some further improvement can be achieved by using irregular LDPC codes, which are known to achieve better error correction performance than regular LDPC codes. This is shown in this paper, for the first time at our knowledge. The possible use of irregular transformation matrices is also investigated, which further increases the efficiency of the system, especially in regard to the public key size.Comment: 6 pages, 3 figures, presented at ISCC 201

    Coding with Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis

    Full text link
    This study examines the use of nonsystematic channel codes to obtain secure transmissions over the additive white Gaussian noise (AWGN) wire-tap channel. Unlike the previous approaches, we propose to implement nonsystematic coded transmission by scrambling the information bits, and characterize the bit error rate of scrambled transmissions through theoretical arguments and numerical simulations. We have focused on some examples of Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes to estimate the security gap, which we have used as a measure of physical layer security, in addition to the bit error rate. Based on a number of numerical examples, we found that such a transmission technique can outperform alternative solutions. In fact, when an eavesdropper (Eve) has a worse channel than the authorized user (Bob), the security gap required to reach a given level of security is very small. The amount of degradation of Eve's channel with respect to Bob's that is needed to achieve sufficient security can be further reduced by implementing scrambling and descrambling operations on blocks of frames, rather than on single frames. While Eve's channel has a quality equal to or better than that of Bob's channel, we have shown that the use of a hybrid automatic repeat-request (HARQ) protocol with authentication still allows achieving a sufficient level of security. Finally, the secrecy performance of some practical schemes has also been measured in terms of the equivocation rate about the message at the eavesdropper and compared with that of ideal codes.Comment: 29 pages, 10 figure

    Exact and Approximate Expressions for the Probability of Undetected Error of Varshamov-Tenengol'ts Codes

    Full text link
    Computation of the undetected error probability for error correcting codes over the Z-channel is an important issue, explored only in part in previous literature. In this paper we consider the case of Varshamov-Tenengol'ts codes, by presenting some analytical, numerical, and heuristic methods for unveiling this additional feature. Possible comparisons with Hamming codes are also shown and discussed.Comment: 33 pages, 9 figures, 1 table. Submitted to the IEEE Transactions on Information Theor
    corecore