274 research outputs found
Functional characterization of RNA-binding proteins and alternative transcriptome in different cancer types
Stochastic Modeling and Dosage Optimization of a Cancer Vaccine Exploiting the EpiMod Framework
GRAPES-DD: exploiting decision diagrams for index-driven search in biological graph databases
GRAPES-DD: exploiting decision diagrams for index-driven search in biological graph databases
BACKGROUND: Graphs are mathematical structures widely used for expressing relationships among elements when representing biomedical and biological information. On top of these representations, several analyses are performed. A common task is the search of one substructure within one graph, called target. The problem is referred to as one-to-one subgraph search, and it is known to be NP-complete. Heuristics and indexing techniques can be applied to facilitate the search. Indexing techniques are also exploited in the context of searching in a collection of target graphs, referred to as one-to-many subgraph problem. Filter-and-verification methods that use indexing approaches provide a fast pruning of target graphs or parts of them that do not contain the query. The expensive verification phase is then performed only on the subset of promising targets. Indexing strategies extract graph features at a sufficient granularity level for performing a powerful filtering step. Features are memorized in data structures allowing an efficient access. Indexing size, querying time and filtering power are key points for the development of efficient subgraph searching solutions.RESULTS: An existing approach, GRAPES, has been shown to have good performance in terms of speed-up for both one-to-one and one-to-many cases. However, it suffers in the size of the built index. For this reason, we propose GRAPES-DD, a modified version of GRAPES in which the indexing structure has been replaced with a Decision Diagram. Decision Diagrams are a broad class of data structures widely used to encode and manipulate functions efficiently. Experiments on biomedical structures and synthetic graphs have confirmed our expectation showing that GRAPES-DD has substantially reduced the memory utilization compared to GRAPES without worsening the searching time.CONCLUSION: The use of Decision Diagrams for searching in biochemical and biological graphs is completely new and potentially promising thanks to their ability to encode compactly sets by exploiting their structure and regularity, and to manipulate entire sets of elements at once, instead of exploring each single element explicitly. Search strategies based on Decision Diagram makes the indexing for biochemical graphs, and not only, more affordable allowing us to potentially deal with huge and ever growing collections of biochemical and biological structures
Peculiar genes selection: A new features selection method to improve classification performances in imbalanced data sets
High-Throughput technologies provide genomic and trascriptomic data that are suitable for biomarker detection for classification purposes. However, the high dimension of the output of such technologies and the characteristics of the data sets analysed represent an issue for the classification task. Here we present a new feature selection method based on three steps to detect class-specific biomarkers in case of high-dimensional data sets. The first step detects the differentially expressed genes according to the experimental conditions tested in the experimental design, the second step filters out the features with low discriminative power and the third step detects the class-specific features and defines the final biomarker as the union of the class-specific features. The proposed procedure is tested on two microarray datasets, one characterized by a strong imbalance between the size of classes and the other one where the size of classes is perfectly balanced. We show that, using the proposed feature selection procedure, the classification performances of a Support Vector Machine on the imbalanced data set reach a 82% whereas other methods do not exceed 73%. Furthermore, in case of perfectly balanced dataset, the classification performances are comparable with other methods. Finally, the Gene Ontology enrichments performed on the signatures selected with the proposed pipeline, confirm the biological relevance of our methodology. The download of the package with the implementation of Peculiar Genes Selection, 'PGS', is available for R users at: http://github.com/mbeccuti/PGS
- …
