366 research outputs found
SIMCO: SIMilarity-based object COunting
We present SIMCO, the first agnostic multi-class object counting approach.
SIMCO starts by detecting foreground objects through a novel Mask RCNN-based
architecture trained beforehand (just once) on a brand-new synthetic 2D shape
dataset, InShape; the idea is to highlight every object resembling a primitive
2D shape (circle, square, rectangle, etc.). Each object detected is described
by a low-dimensional embedding, obtained from a novel similarity-based head
branch; this latter implements a triplet loss, encouraging similar objects
(same 2D shape + color and scale) to map close. Subsequently, SIMCO uses this
embedding for clustering, so that different types of objects can emerge and be
counted, making SIMCO the very first multi-class unsupervised counter.
Experiments show that SIMCO provides state-of-the-art scores on counting
benchmarks and that it can also help in many challenging image understanding
tasks
The pictures we like are our image: continuous mapping of favorite pictures into self-assessed and attributed personality traits
Flickr allows its users to tag the pictures they like as “favorite”. As a result, many users of the popular photo-sharing platform produce galleries of favorite pictures. This article proposes new approaches, based on Computational Aesthetics, capable to infer the personality traits of Flickr users from the galleries above. In particular, the approaches map low-level features extracted from the pictures into numerical scores corresponding to the Big-Five Traits, both self-assessed and attributed. The experiments were performed over 60,000 pictures tagged as favorite by 300 users (the PsychoFlickr Corpus). The results show that it is possible to predict beyond chance both self-assessed and attributed traits. In line with the state-of-the art of Personality Computing, these latter are predicted with higher effectiveness (correlation up to 0.68 between actual and predicted traits)
Audio-visual foreground extraction for event characterization
This paper presents a new method able to integrate audio and visual information for scene analysis in a typical surveillance scenario, using only one camera and one monaural microphone. Visual information is analyzed by a standard visual background/foreground (BG/FG) modelling module, enhanced with a novelty detection stage, and coupled with an audio BG/FG modelling scheme. The audiovisual association is performed on-line, by exploiting the concept of synchrony. Experimental tests carrying out classification and clustering of events show all the potentialities of the proposed approach, also in comparison with the results obtained by using the single modalities
F-formation Detection: Individuating Free-standing Conversational Groups in Images
Detection of groups of interacting people is a very interesting and useful
task in many modern technologies, with application fields spanning from
video-surveillance to social robotics. In this paper we first furnish a
rigorous definition of group considering the background of the social sciences:
this allows us to specify many kinds of group, so far neglected in the Computer
Vision literature. On top of this taxonomy, we present a detailed state of the
art on the group detection algorithms. Then, as a main contribution, we present
a brand new method for the automatic detection of groups in still images, which
is based on a graph-cuts framework for clustering individuals; in particular we
are able to codify in a computational sense the sociological definition of
F-formation, that is very useful to encode a group having only proxemic
information: position and orientation of people. We call the proposed method
Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all
the state of the art methods in terms of different accuracy measures (some of
them are brand new), demonstrating also a strong robustness to noise and
versatility in recognizing groups of various cardinality.Comment: 32 pages, submitted to PLOS On
The Visual Social Distancing Problem
One of the main and most effective measures to contain the recent viral
outbreak is the maintenance of the so-called Social Distancing (SD). To comply
with this constraint, workplaces, public institutions, transports and schools
will likely adopt restrictions over the minimum inter-personal distance between
people. Given this actual scenario, it is crucial to massively measure the
compliance to such physical constraint in our life, in order to figure out the
reasons of the possible breaks of such distance limitations, and understand if
this implies a possible threat given the scene context. All of this, complying
with privacy policies and making the measurement acceptable. To this end, we
introduce the Visual Social Distancing (VSD) problem, defined as the automatic
estimation of the inter-personal distance from an image, and the
characterization of the related people aggregations. VSD is pivotal for a
non-invasive analysis to whether people comply with the SD restriction, and to
provide statistics about the level of safety of specific areas whenever this
constraint is violated. We then discuss how VSD relates with previous
literature in Social Signal Processing and indicate which existing Computer
Vision methods can be used to manage such problem. We conclude with future
challenges related to the effectiveness of VSD systems, ethical implications
and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this
manuscript and they are listed by alphabetical order. Under submissio
Looking Beyond Appearances: Synthetic Training Data for Deep CNNs in Re-identification
Re-identification is generally carried out by encoding the appearance of a
subject in terms of outfit, suggesting scenarios where people do not change
their attire. In this paper we overcome this restriction, by proposing a
framework based on a deep convolutional neural network, SOMAnet, that
additionally models other discriminative aspects, namely, structural attributes
of the human figure (e.g. height, obesity, gender). Our method is unique in
many respects. First, SOMAnet is based on the Inception architecture, departing
from the usual siamese framework. This spares expensive data preparation
(pairing images across cameras) and allows the understanding of what the
network learned. Second, and most notably, the training data consists of a
synthetic 100K instance dataset, SOMAset, created by photorealistic human body
generation software. Synthetic data represents a good compromise between
realistic imagery, usually not required in re-identification since surveillance
cameras capture low-resolution silhouettes, and complete control of the
samples, which is useful in order to customize the data w.r.t. the surveillance
scenario at-hand, e.g. ethnicity. SOMAnet, trained on SOMAset and fine-tuned on
recent re-identification benchmarks, outperforms all competitors, matching
subjects even with different apparel. The combination of synthetic data with
Inception architectures opens up new research avenues in re-identification.Comment: 14 page
Transformer Networks for Trajectory Forecasting
Most recent successes on forecasting the people motion are based on LSTM
models and all most recent progress has been achieved by modelling the social
interaction among people and the people interaction with the scene. We question
the use of the LSTM models and propose the novel use of Transformer Networks
for trajectory forecasting. This is a fundamental switch from the sequential
step-by-step processing of LSTMs to the only-attention-based memory mechanisms
of Transformers. In particular, we consider both the original Transformer
Network (TF) and the larger Bidirectional Transformer (BERT), state-of-the-art
on all natural language processing tasks. Our proposed Transformers predict the
trajectories of the individual people in the scene. These are "simple" model
because each person is modelled separately without any complex human-human nor
scene interaction terms. In particular, the TF model without bells and whistles
yields the best score on the largest and most challenging trajectory
forecasting benchmark of TrajNet. Additionally, its extension which predicts
multiple plausible future trajectories performs on par with more engineered
techniques on the 5 datasets of ETH + UCY. Finally, we show that Transformers
may deal with missing observations, as it may be the case with real sensor
data. Code is available at https://github.com/FGiuliari/Trajectory-Transformer.Comment: 18 pages, 3 figure
- …
