24 research outputs found
A Neural “Tuning Curve” for Multisensory Experience and Cognitive-Perceptual Schizotypy
Our coherent perception of external events is enabled by the integration of inputs from different senses occurring within a range of temporal offsets known as the temporal binding window (TBW), which varies from person to person. A relatively wide TBW may increase the likelihood that stimuli originating from different environmental events are erroneously integrated and abnormally large TBW has been found in psychiatric disorders characterized by unusual perceptual experiences. Despite strong evidence of interindividual differences in TBW, both within clinical and nonclinical populations, the neurobiological underpinnings of this variability remain unclear. We adopted an integrated strategy linking TBW to temporal dynamics in functional magnetic resonance imaging (fMRI)-resting-state activity and cortical excitation/inhibition (E/I) balance, indexed by glutamate/Gamma-AminoButyric Acid (GABA) concentrations and common variation in glutamate and GABA genes in a healthy sample. Stronger resting-state longrange temporal correlations, indicated by larger power law exponent (PLE), in the auditory cortex, robustly predicted narrower audio-tactile TBW, which was in turn associated with lower cognitive-perceptual schizotypy. Furthermore, PLE was highest and TBW narrowest for individuals with intermediate levels of E/I balance, with shifts towards either extreme resulting in reduced multisensory temporal precision and increased schizotypy, effectively forming a neural ?tuning curve? for multisensory experience and schizophrenia risk. Our findings shed light on the neurobiological underpinnings of multisensory integration and its potentially clinically relevant inter-individual variability
Gene expression modifications in Wharton’s Jelly mesenchymal stem cells promoted by prolonged in vitro culturing
p53, cathepsin D, Bcl-2 are joint prognostic indicators of breast cancer metastatic spreading
BACKGROUND: Traditional prognostic indicators of breast cancer, i.e. lymph node diffusion, tumor size, grading and estrogen receptor expression, are inadequate predictors of metastatic relapse. Thus, additional prognostic parameters appear urgently needed. Individual oncogenic determinants have largely failed in this endeavour. Only a few individual tumor growth drivers, e.g. mutated p53, Her-2, E-cadherin, Trops, did reach some prognostic/predictive power in clinical settings. As multiple factors are required to drive solid tumor progression, clusters of such determinants were expected to become stronger indicators of tumor aggressiveness and malignant progression than individual parameters. To identify such prognostic clusters, we went on to coordinately analyse molecular and histopathological determinants of tumor progression of post-menopausal breast cancers in the framework of a multi-institutional case series/case-control study. METHODS: A multi-institutional series of 217 breast cancer cases was analyzed. Twenty six cases (12 %) showed disease relapse during follow-up. Relapsed cases were matched with a set of control patients by tumor diameter, pathological stage, tumor histotype, age, hormone receptors and grading. Histopathological and molecular determinants of tumor development and aggressiveness were then analyzed in relapsed versus non-relapsed cases. Stepwise analyses and model structure fitness assessments were carried out to identify clusters of molecular alterations with differential impact on metastatic relapse. RESULTS: p53, Bcl-2 and cathepsin D were shown to be coordinately associated with unique levels of relative risk for disease relapse. As many Ras downstream targets, among them matrix metalloproteases, are synergistically upregulated by mutated p53, whole-exon sequence analyses were performed for TP53, Ki-RAS and Ha-RAS, and findings were correlated with clinical phenotypes. Notably, TP53 insertion/deletion mutations were only detected in relapsed cases. Correspondingly, Ha-RAS missense oncogenic mutations were only found in a subgroup of relapsing tumors. CONCLUSIONS: We have identified clusters of specific molecular alterations that greatly improve prognostic assessment with respect to singularly-analysed indicators. The combined analysis of these multiple tumor-relapse risk factors promises to become a powerful approach to identify patients subgroups with unfavourable disease outcome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-016-2713-3) contains supplementary material, which is available to authorized users
Long-Term Dynamic Changes of NMDA Receptors Following an Excitotoxic Challenge
Excitotoxicity is a form of neuronal death characterized by the sustained activation of N-methyl-D-aspartate receptors (NMDARs) triggered by the excitatory neurotransmitter glutamate. NADPH-diaphorase neurons (also known as nNOS (+) neurons) are a subpopulation of aspiny interneurons, largely spared following excitotoxic challenges. Unlike nNOS (−) cells, nNOS (+) neurons fail to generate reactive oxygen species in response to NMDAR activation, a critical divergent step in the excitotoxic cascade. However, additional mechanisms underlying the reduced vulnerability of nNOS (+) neurons to NMDAR-driven neuronal death have not been explored. Using functional, genetic, and molecular analysis in striatal cultures, we indicate that nNOS (+) neurons possess distinct NMDAR properties. These specific features are primarily driven by the peculiar redox milieu of this subpopulation. In addition, we found that nNOS (+) neurons exposed to a pharmacological maneuver set to mimic chronic excitotoxicity alter their responses to NMDAR-mediated challenges. These findings suggest the presence of mechanisms providing long-term dynamic regulation of NMDARs that can have critical implications in neurotoxic settings.</jats:p
Long-Term Dynamic Changes of NMDA Receptors Following an Excitotoxic Challenge
Excitotoxicity is a form of neuronal death characterized by the sustained activation of N-methyl-D-aspartate receptors (NMDARs) triggered by the excitatory neurotransmitter glutamate. NADPH-diaphorase neurons (also known as nNOS (+) neurons) are a subpopulation of aspiny interneurons, largely spared following excitotoxic challenges. Unlike nNOS (−) cells, nNOS (+) neurons fail to generate reactive oxygen species in response to NMDAR activation, a critical divergent step in the excitotoxic cascade. However, additional mechanisms underlying the reduced vulnerability of nNOS (+) neurons to NMDAR-driven neuronal death have not been explored. Using functional, genetic, and molecular analysis in striatal cultures, we indicate that nNOS (+) neurons possess distinct NMDAR properties. These specific features are primarily driven by the peculiar redox milieu of this subpopulation. In addition, we found that nNOS (+) neurons exposed to a pharmacological maneuver set to mimic chronic excitotoxicity alter their responses to NMDAR-mediated challenges. These findings suggest the presence of mechanisms providing long-term dynamic regulation of NMDARs that can have critical implications in neurotoxic settings
Long-term dynamic changes of NMDA receptors following an excitotoxic challenge
AbstractExcitotoxicity is a form of neuronal death characterized by the sustained activation of N-methyl-D-aspartate receptors (NMDARs) triggered by the excitatory neurotransmitter glutamate. NADPH-diaphorase neurons [also known as nNOS (+) neurons] are a subpopulation of aspiny interneurons, largely spared following excitotoxic challenges. Unlike nNOS (-) cells, nNOS (+) neurons fail to generate reactive oxygen species in response to NMDAR activation, a key divergent step in the excitotoxic cascade. However, additional mechanisms underlying the reduced vulnerability of nNOS (+) neurons to NMDAR-driven neuronal death have not been explored. Using functional, genetic, and molecular analysis in striatal cultures, we demonstrate that nNOS (+) neurons possess distinct NMDAR properties. These specific features are primarily driven by the peculiar redox milieu of this subpopulation. In addition, we found that nNOS (+) neurons exposed to a pharmacological maneuver set to mimic chronic excitotoxicity alter their responses to NMDAR-mediated challenges. These findings suggest the presence of mechanisms providing long-term dynamic regulation of NMDARs that can have critical implications in neurotoxic settings.</jats:p
Aging and the Combined effects of ADRA2B and CB1 deletions on Affective Working Memory
Abstract Many studies have found that memory for affective material is better than memory for neutral information and memory for positive material compared to negative material is better in older adults. Behavioral, neurophysiological as well as single polymorphism differences have been advanced to account for these effects. Here, we aimed to examine whether the combination of two polymorphisms (ADRA2B and CB1) in older adults influences active maintenance and manipulation of emotional information in aging working memory. We examined genotype data from 207 older adults (56 double deletion carriers, 116 single deletion carriers and 35 no deletion carriers) who performed a verbal operation span-like task with positive, negative and neutral words. We found that subjects carrying both ADRA2B and CB1 variants generally remembered a higher number of words. In addition, double carriers showed positivity effects while single carriers showed more general emotional enhancement effects, especially as strings lengthened. These findings are amongst the first to suggest a haplotype account of positivity effects in older adults’ memory
Aging and the Combined effects of ADRA2B and CB1 deletions on Affective Working Memory
AbstractMany studies have found that memory for affective material is better than memory for neutral information and memory for positive material compared to negative material is better in older adults. Behavioral, neurophysiological as well as single polymorphism differences have been advanced to account for these effects. Here, we aimed to examine whether the combination of two polymorphisms (ADRA2B and CB1) in older adults influences active maintenance and manipulation of emotional information in aging working memory. We examined genotype data from 207 older adults (56 double deletion carriers, 116 single deletion carriers and 35 no deletion carriers) who performed a verbal operation span-like task with positive, negative and neutral words. We found that subjects carrying both ADRA2B and CB1 variants generally remembered a higher number of words. In addition, double carriers showed positivity effects while single carriers showed more general emotional enhancement effects, especially as strings lengthened. These findings are amongst the first to suggest a haplotype account of positivity effects in older adults’ memory.</jats:p
Inside the granulosa transcriptome
The somatic component of follicular structure is a mixture of different cell types, represented by Granulosa cells (GCs) that are the paracrine regulators of the oocyte growth. GCs finely support this process by a continuous bidirectional talk with oocyte, which ensure oocyte quality and competence. Specific pathways are involved in the cross-talk and in both GCs and oocyte development. This review summarizes data from GCs gene expression analysis concerning both their physiological role and their interaction with oocyte. We also explore the CGs transcriptome modifications induced by controlled ovarian stimulation (COS) or pathological conditions and their impact in reproduction. The transcriptome analysis of GCs could be a powerful tool to improve our knowledge about the pathways involved in oocyte development. This approach, associated with new technologies as RNA-seq could allow the identifications of new noninvasive biological markers of oocyte quality to increase the efficiency of clinical IVF. Moreover, GCs expression analysis could be useful to shed light on new therapeutic targets by providing new options for the treatment of infertility
Stemness Characteristics of Periodontal Ligament Stem Cells from Donors and Multiple Sclerosis Patients: A Comparative Study
Multiple sclerosis (MS) is the most prevalent and progressive autoimmune disease that affects the central nervous system, and currently, no drug is available for the treatment. Stem cell therapy has received substantial attention in MS treatment. Recently, we demonstrated the immunosuppressive effects of mesenchymal stem cells derived from neural crest-originated human periodontal ligament tissue (hPDLSCs) in an in vivo model of MS. In the present study, we comparatively investigated the stemness properties of hPDLSCs derived from healthy donors and relapsing-remitting MS patients. Stem cell marker expression, cell proliferation, and differentiation capacity were studied. We found that both donor- and MS patient-derived hPDLSCs at early passage 2 showed similar expression of surface antigen markers and cell proliferation rate. Significant level of osteogenic, adipogenic, chondrogenic, and neurogenic differentiation capacities was observed in both donor- and MS patient-derived hPDLSCs. Interestingly, these cells maintained the stemness properties even at late passage 15. Senescence markers p16 and p21 expression was considerably enhanced in passage 15. Our results propose that hPDLSCs may serve as simple and potential autologous stem cell niche, which may help in personalized stem cell therapy for MS patients
