74 research outputs found
Optical imaging of strain in two-dimensional crystals
Strain engineering is widely used in material science to tune the
(opto-)electronic properties of materials and enhance the performance of
devices. Two-dimensional atomic crystals are a versatile playground to study
the influence of strain, as they can sustain very large deformations without
breaking. Various optical techniques have been employed to probe strain in
two-dimensional materials, including micro-Raman and photoluminescence
spectroscopy. Here we demonstrate that optical second harmonic generation
constitutes an even more powerful technique, as it allows to extract the full
strain tensor with a spatial resolution below the optical diffraction limit.
Our method is based on the strain-induced modification of the nonlinear
susceptibility tensor due to a photoelastic effect. Using a two-point bending
technique, we determine the photoelastic tensor elements of molybdenum
disulfide. Once identified, these parameters allow us to spatially image the
two-dimensional strain field in an inhomogeneously strained sample.Comment: 13 pages, 4 figure
CMOS-compatible graphene photodetector covering all optical communication bands
Optical interconnects are becoming attractive alternatives to electrical
wiring in intra- and inter-chip communication links. Particularly, the
integration with silicon complementary metal-oxide-semiconductor (CMOS)
technology has received considerable interest due to the ability of
cost-effective integration of electronics and optics on a single chip. While
silicon enables the realization of optical waveguides and passive components,
the integration of another, optically absorbing, material is required for
photodetection. Germanium or compound semiconductors are traditionally used for
this purpose; their integration with silicon technology, however, faces major
challenges. Recently, graphene has emerged as a viable alternative for
optoelectronic applications, including photodetection. Here, we demonstrate an
ultra-wideband CMOS-compatible photodetector based on graphene. We achieve
multi-gigahertz operation over all fiber-optic telecommunication bands, beyond
the wavelength range of strained germanium photodetectors, whose responsivity
is limited by their bandgap. Our work complements the recent demonstration of a
CMOS-integrated graphene electro-optical modulator, paving the way for
carbon-based optical interconnects.Comment: 18 pages, 4 figures. Nature Photonics, 201
Photovoltaic effect in an electrically tunable van der Waals heterojunction
Semiconductor heterostructures form the cornerstone of many electronic and
optoelectronic devices and are traditionally fabricated using epitaxial growth
techniques. More recently, heterostructures have also been obtained by vertical
stacking of two-dimensional crystals, such as graphene and related two-
dimensional materials. These layered designer materials are held together by
van der Waals forces and contain atomically sharp interfaces. Here, we report
on a type- II van der Waals heterojunction made of molybdenum disulfide and
tungsten diselenide monolayers. The junction is electrically tunable and under
appropriate gate bias, an atomically thin diode is realized. Upon optical
illumination, charge transfer occurs across the planar interface and the device
exhibits a photovoltaic effect. Advances in large-scale production of
two-dimensional crystals could thus lead to a new photovoltaic solar
technology.Comment: 26 pages, 14 figures, Nano Letters 201
Device physics of van der Waals heterojunction solar cells
Heterostructures based on atomically thin semiconductors are considered a
promising emerging technology for the realization of ultrathin and ultralight
photovoltaic solar cells on flexible substrates. Much progress has been made in
recent years on a technological level, but a clear picture of the physical
processes that govern the photovoltaic response remains elusive. Here, we
present a device model that is able to fully reproduce the current-voltage
characteristics of type-II van der Waals heterojunctions under optical
illumination, including some peculiar behaviors such as exceedingly high
ideality factors or bias-dependent photocurrents. While we find the spatial
charge transfer across the junction to be very efficient, we also find a
considerable accumulation of photogenerated carriers in the active device
region due to poor electrical transport properties, giving rise to significant
carrier recombination losses. Our results are important to optimize future
device architectures and increase power conversion efficiencies of atomically
thin solar cells.Comment: 20 pages, 5 figure
Solar-energy conversion and light emission in an atomic monolayer p-n diode
Two-dimensional (2D) atomic crystals, such as graphene and atomically thin
transition metal dichalcogenides (TMDCs), are currently receiving a lot of
attention. They are crystalline, and thus of high material quality, even so,
they can be produced in large areas and are bendable, thus providing
opportunities for novel applications. Here, we report a truly 2D p-n junction
diode, based on an electrostatically doped tungsten diselenide (WSe2)
monolayer. As p-n diodes are the basic building block in a wide variety of
optoelectronic devices, our demonstration constitutes an important advance
towards 2D optoelectronics. We present applications as (i) photovoltaic solar
cell, (ii) photodiode, and (iii) light emitting diode. Light power conversion
and electroluminescence efficiencies are ca. 0.5 % and 0.1 %, respectively.
Given the recent advances in large-scale production of 2D crystals, we expect
them to profoundly impact future developments in solar, lighting, and display
technologies.Comment: 23 pages, 7 figures. Nature Nanotechnology (2014
Microcavity-integrated graphene photodetector
The monolithic integration of novel nanomaterials with mature and established
technologies has considerably widened the scope and potential of nanophotonics.
For example, the integration of single semiconductor quantum dots into photonic
crystals has enabled highly efficient single-photon sources. Recently, there
has also been an increasing interest in using graphene - a single atomic layer
of carbon - for optoelectronic devices. However, being an inherently weak
optical absorber (only 2.3 % absorption), graphene has to be incorporated into
a high-performance optical resonator or waveguide to increase the absorption
and take full advantage of its unique optical properties. Here, we demonstrate
that by monolithically integrating graphene with a Fabry-Perot microcavity, the
optical absorption is 26-fold enhanced, reaching values >60 %. We present a
graphene-based microcavity photodetector with record responsivity of 21 mA/W.
Our approach can be applied to a variety of other graphene devices, such as
electro-absorption modulators, variable optical attenuators, or light emitters,
and provides a new route to graphene photonics with the potential for
applications in communications, security, sensing and spectroscopy.Comment: 19 pages, 4 figure
Photodetektion und Photovoltaik mit atomar dünnen Kristallen
Atomar dünne Kristalle sind neuartige Materialien mit außergewöhnlichen optischen und elektronischen Eigenschaften. Diese sind zu einem großen Teil auf die stark eingeschränkte Bewegungsfreiheit der Ladungsträger aufgrund der geringen Schichtdicken zurückzuführen. Der Fokus dieser Dissertation liegt auf der Erforschung der optoelektronischen Eigenschaften zweidimensionaler Halbleiter sowie daraus hergestellter Heterostrukturen. Übergangsmetall-Dichalkogenide treten häufig in geschichteter Kristallstruktur auf. Die schwachen Van der Waals Bindungskräfte zwischen den einzelnen Ebenen ermöglichen die Synthese von Kristallen mit atomarer Dicke. Werden elektronische oder optoelektronische Bauelemente aus solchen Materialien hergestellt, zeigt sich eine starke Abhängigkeit der Bauteilseigenschaften von den Umgebungsparametern. Diese entsteht durch das extreme Verhältnis von aktivem zu umgebenden Material. Anhand von MoS2-Feldeffekttransistoren konnten wir nachweisen, dass deren Lichtempfindlichkeit maßgeblich durch das Einfangen von Ladungsträgern beeinflusst wird. Dabei gelang es, die zwei dominanten Komponenten zu identifizieren und isolieren. Es wurde nachgewiesen, dass ein Teil des delektierten Signals auf das Einfangen von Ladungsträgern durch bandkantennahe Zustände zurückzuführen ist. Dies hat eine Erhöhung der effektiven Ladungsträgerlebensdauer, und damit einhergehend eine höhere Leitfähigkeit des Kanals, zufolge. Da die Anlagerungsniveaus ihren Ursprung in Gitterfehlern haben, hängt diese Komponente direkt von den Materialeigenschaften des Kanals ab. Im Gegensatz dazu, basiert die zweite Komponente auf dem Einfangen von Ladungsträgern in direkter Umgebung zum Kanal. Die eingefangenen Ladungsträger agieren als lokale Gate-Elektroden und führen zu einer Veränderung der Schwellspannung. Durch einen Austausch der gasförmigen Umgebung des Kanals konnte daher die Lichtempfindlichkeit des Transistors maßgeblich beeinflusst werden. Die experimentellen Ergebnisse konnten anhand eines einfachen Modells vollständig reproduziert werden. Darüber hinaus gelang es, den Grund für die weite Streuung der bisher publizierten Ergebnisse zu erklären. Thermoplastische Polymere können verwendet werden, um einzelne, atomar dünne Kristalle von einem Trägersubstrat aufzunehmen und übereinander zu stapeln. Es gelang uns zu zeigen, dass die so erzeugten Heterostrukturen aus zwei bzw. drei unterschiedlichen halbleitenden Übergangsmetall-Dichalkogeniden verwendet werden können, um optische Energie in elektrische umzuwandeln. Durch die außerordentlich starke Lichtabsorption in atomar dünnen Schichten konnte dies mit nur wenigen Atomlagen dicken Zellen erzielt werden. Die gemessenen Von den gemessenen elektrischen und photovoltaischen Kennlinien konnte der Umwandlungsprozess erklärt werden: Die Typ-II Heterostruktur führt zu einer Dissoziation der optisch generierten Exzitonen. Da sie darüber hinaus als diskriminierende Barriere für den Transport der Löcher und Elektronen fungiert, kommt es zu einer Ladungstrennung und somit zu dem beobachteten Photovoltaischen Effekt. Im Zuge dieser Arbeit wurden zwei Polymer-basierte Fabrikationsprozesse optimiert und weiterentwickelt. Diese ermöglichten die Herstellung von Heterostrukturen mit sauberen, abrupten Materialübergängen. In Betracht der rapiden Weiterentwicklung von Wachstumsprozessen für atomar dünne Übergangsmetall-Dichalkogenide, suggerieren unsere Ergebnisse, dass Van der Waals Heterostrukturen die Grundlage für eine neue Generation von exzitonischen Solarzellen bilden könnten.Atomically thin crystals are an emerging class of materials with outstanding optical and electronic properties. Many of these arise from the confinement of charge carriers to a quasi-two-dimensional plane. This thesis focuses on the fundamental optoelectronic characteristics of two-dimensional semiconductors and heterostructures made therefrom. Within the area of solid state physics, single layers of transition metal dichalcogenides have become subject of intensive studies. The extreme ratio of surrounding-to-active material in electronic and optoelectronic devices made from mono- and few-layer transition metal dichalcogenides strongly enhances the impact of the environment on the device properties. We demonstrated, by the example of molybdenum disulfide mono- and bilayer field effect transistors, that the photoresponse observed under non-zero bias strongly depends on the trapping of charge carriers. The two dominating components were successfully identified and separated. The first one is intrinsic and arises from trapping of photogenerated carriers in band tail trap states. This results in an increase of the effective carrier lifetime, and thus in a reduction of the channel resistance. The second, extrinsic one, was found to stem from trapping in the surroundings of the channel. It was shown that the trapped charge carriers act as local gates that are the origin of a transistor threshold voltage shift. Hence, it was possible to modulate the conductance by modifying the gaseous environment of the device. We not only presented a simple model that reproduced our experimental findings, but were also able to elucidate the origin of the strong variation found in previously reported values. Van der Waals bound heterostructures can be easily fabricated by thermoplastic polymer based stacking techniques. By using two and more atomically thin semiconducting layers we could demonstrate that the so formed staggered heterostructures are able to harvest solar energy. Because of the extraordinarily strong absorption of light in atomically thin layers, it was possible to achieve an efficient power conversion with a minimal amount of active material. By carefully analyzing the observed electrical and photovoltaic properties we could explain their origin: the band-structure of the fabricated stacks efficiently dissociates the photogenerated excitons and forms a discriminating barrier for the transport of the so generated electrons and holes. During this work, two fabrication methods that allow the realization of heterostructures with clean, atomically sharp interfaces were optimized. Our findings suggest that, accompanied by the advances in large area fabrication of atomically thin transition metal dichalcogenides, van der Waals heterostructures are promising candidates for a new generation of excitonic solar cells
- …
