157 research outputs found

    The SSSA-MyHand: a dexterous lightweight myoelectric hand prosthesis

    Get PDF
    The replacement of a missing hand by a prosthesis is one of the most fascinating challenges in rehabilitation engineering. State of art prostheses are curtailed by the physical features of the hand, like poor functionality and excessive weight. Here we present a new multi-grasp hand aimed at overcoming such limitations. The SSSA-MyHand builds around a novel transmission mechanism that implements a semi-independent actuation of the abduction/adduction of the thumb and of the flexion/extension of the index, by means of a single actuator. Thus, with only three electric motors the hand is capable to perform most of the grasps and gestures useful in activities of daily living, akin commercial prostheses with up to six actuators, albeit it is as lightweight as conventional 1-Degrees of Freedom prostheses. The hand integrates position and force sensors and an embedded controller that implements automatic grasps and allows inter-operability with different human-machine interfaces. We present the requirements, the design rationale of the first prototype and the evaluation of its performance. The weight (478 g), force (31 N maximum force at the thumb fingertip) and speed of the hand (closing time: <370 ms), make this new design an interesting alternative to clinically available multi-grasp prostheses

    Ricerca di Marketing a supporto del lancio di due dispositivi medicali: i casi Virusolve+ e Santec Laser Smooth™ (Fotona) di Santec Srl

    Get PDF
    L’obiettivo principale del presente lavoro di tesi magistrale è applicare la ricerca di marketing ad un caso concreto, proposto dall’azienda Santec Srl, al fine di raccogliere informazioni necessarie alla definizione della strategia aziendale. L’azienda Santec Srl, opera nel settore dei dispositivi medicali e sta lanciando sul mercato italiano due prodotti innovativi: il primo è una salvietta ad elevato potere disinfettante in grado di eliminare in pochi minuti virus, batteri e funghi; il secondo è un sistema laser a stato solido utilizzabile a scopo terapeutico in ambito ginecologico

    Pectus excavatum and heritable disorders of the connective tissue

    Get PDF
    Pectus excavatum, the most frequent congenital chest wall deformity, may be rarely observed as a sole deformity or as a sign of an underlying connective tissue disorder. To date, only few studies have described correlations between this deformity and heritable connective tissue disorders such as Marfan, Ehlers-Danlos, Poland, MASS (Mitral valve prolapse, not progressive Aortic enlargement, Skeletal and Skin alterations) phenotype among others. When concurring with connective tissue disorder, cardiopulmonary and vascular involvement may be associated to the thoracic defect. Ruling out the concomitance of pectus excavatum and connective tissue disorders, therefore, may have a direct implication both on surgical outcome and long term prognosis. In this review we focused on biological bases of connective tissue disorders which may be relevant to the pathogenesis of pectus excavatum, portraying surgical and clinical implication of their concurrence

    Handheld Optical System for Pectus Excavatum Assessment

    Get PDF
    Disruptive 3D technologies, such as reverse engineering (RE) and additive manufacturing (AM), when applied in the medical field enable the development of new methods for personalized and non-invasive treatments. When referring to the monitoring of pectus excavatum, one of the most common thoracic malformations, 3D acquisition of the patient chest proved to be a straightforward method for assessing and measuring chest deformation. Unfortunately, such systems are usually available in a dedicated facility, can be operated only by specialized doctors with the support of engineers and can be used only with patients on site. It is therefore impossible to perform any routine check-up when the patient is unable to reach the outpatient clinic. The COVID19 pandemic situation has placed even greater restrictions on patient mobility, worsening this problem. To deal with this issue, a new low-cost portable optical scanner for monitoring pectus excavatum is proposed in this work. The scanner, named Thor 2.0, allows a remote diagnostic approach, offering the possibility to perform routine check-ups telematically. Usability tests confirmed the user-friendly nature of the devised system. The instrument was used at the Meyer Children’s Hospital (Florence, Italy) chest-malformations center to treat PE patients. The performed measurements proved to be in line with the current state of the art

    Towards a CAD-based automatic procedure for patient specific cutting guides to assist sternal osteotomies in pectus arcuatum surgical correction

    Get PDF
    Abstract Pectus Arcuatum, a rare congenital chest wall deformity, is characterized by the protrusion and early ossification of sternal angle thus configuring as a mixed form of excavatum and carinatum features. Surgical correction of pectus arcuatum always includes one or more horizontal sternal osteotomies, consisting in performing a V-shaped horizontal cutting of the sternum (resection prism) by means of an oscillating power saw. The angle between the saw and the sternal body in the V-shaped cut is determined according to the peculiarity of the specific sternal arch. The choice of the right angle, decided by the surgeon on the basis of her/his experience, is crucial for a successful intervention. The availability of a patient-specific surgical guide conveying the correct cutting angles can considerably improve the chances of success and, at the same time, reduce the intervention time. The present paper aims to propose a new CAD-based approach to design and produce custom-made surgical guides, manufactured by using additive manufacturing techniques, to assist the sternal osteotomy. Starting from CT images, the procedure allows to determine correct resection prism and to shape the surgical guide accordingly taking into account additive manufacturing capabilities. Virtually tested against three case studies the procedure demonstrated its effectiveness. Highlights Patient-specific surgical guide improves the chances of success in sternal osteotomy. A CAD-based approach to design and produce custom-made surgical guides is proposed. The proposed framework entails both a series of automatic and user-guided tasks

    The Role of DNA Amplification and Cultural Growth in Complicated Acute Appendicitis

    Get PDF
    Bacterial growth of peritoneal fluid specimens obtained during surgical procedures for acute appendicitis may be useful to optimize further antibiotic therapy in complicated cases. DNA amplification represents a fast technique to detect microbial sequences. We aimed to compare the potential of DNA amplification versus traditional bacterial growth culture highlighting advantages and drawbacks in a surgical setting. Peritoneal fluid specimens were collected during surgery from 36 children who underwent appendectomy between May and December 2012. Real-time polymerase chain reaction (RT-PCR) and cultures were performed on each sample. RT-PCR showed an amplification of 16S in 18/36 samples, <em>Escherichia coli</em> (in 7 cases), <em>Pseudomonas aeruginosa</em> (3), <em>Fusobacterium necrophorum</em> (3), <em>Adenovirus</em> (2), <em>E.coli</em> (1), <em>Klebsiella pneumoniae</em> (1), <em>Serratia marcescens/Enterobacter cloacae</em> (1). Bacterial growth was instead observed only in four patients (3 <em>E.coli</em> and 1 <em>P.aeruginosa</em> and <em>Bacteroides ovatus</em>). Preoperative C-reactive protein and inflammation degree, the most reliable indicators of bacterial translocation, were elevated as expected. DNA amplification was a quick and useful method to detect pathogens and it was even more valuable in detecting aggressive pathogens such as anaerobes, difficult to preserve in biological cultures; its drawbacks were the lack of biological growths and of antibiograms. In our pilot study RT-PCR and cultures did not influence the way patients were treated

    Development of a porcine acellular bladder matrix for tissue-engineered bladder reconstruction

    Get PDF
    PURPOSE: Enterocystoplasty is adopted for patients requiring bladder augmentation, but significant long-term complications highlight need for alternatives. We established a protocol for creating a natural-derived bladder extracellular matrix (BEM) for developing tissue-engineered bladder, and investigated its structural and functional characteristics. METHODS: Porcine bladders were de-cellularised with a dynamic detergent-enzymatic treatment using peristaltic infusion. Samples and fresh controls were evaluated using histological staining, ultrastructure (electron microscopy), collagen, glycosaminoglycans and DNA quantification and biomechanical testing. Compliance and angiogenic properties (Chicken chorioallantoic membrane [CAM] assay) were evaluated. T test compared stiffness and glycosaminoglycans, collagen and DNA quantity. p value of < 0.05 was regarded as significant. RESULTS: Histological evaluation demonstrated absence of cells with preservation of tissue matrix architecture (collagen and elastin). DNA was 0.01 μg/mg, significantly reduced compared to fresh tissue 0.13 μg/mg (p < 0.01). BEM had increased tensile strength (0.259 ± 0.022 vs 0.116 ± 0.006, respectively, p < 0.0001) and stiffness (0.00075 ± 0.00016 vs 0.00726 ± 0.00216, p = 0.011). CAM assay showed significantly increased number of convergent allantoic vessels after 6 days compared to day 1 (p < 0.01). Urodynamic studies showed that BEM maintains or increases capacity and compliance. CONCLUSION: Dynamic detergent-enzymatic treatment produces a BEM which retains structural characteristics, increases strength and stiffness and is more compliant than native tissue. Furthermore, BEM shows angiogenic potential. These data suggest the use of BEM for development of tissue-engineered bladder for patients requiring bladder augmentation
    corecore