875 research outputs found

    Visualizzazione volumetrica diretta interattiva con effetti di illuminazione mediante Register Combiner OpenGL

    Get PDF
    In diversi ambiti scientifici e industriali, la sempre più frequente acquisizione di dati volumetrici fa crescere la domanda di potenti tool per la loro visualizzazione, analisi e manipolazione interattiva. In questo rapporto presentiamo una tecnica di visualizzazione volumetrica diretta che consente l’applicazione del modello di illuminazione di Phong in tempo reale. La tecnica implementa il modello ottico di assorbimento + emissione eseguendo in tempo reale campionamento, mapping e integrazione delle proprietà ottiche esclusivamente attraverso funzionalità base di OpenGL 1.2. L’implementazione del modello di Phong, basato sul calcolo del gradiente di opacità, e eseguito in tempo reale utilizzando i Register Combiner. I vincoli del real-time sono soddisfatti anche grazie alla applicazione di una tecnica di accelerazione multipass basata sulla copia rapida di informazioni dal framebuffer alla memoria di texture, offerta già dalla versione 1.1 di OpenGL

    Un sistema multiprocessore per la simulazione della chirurgia sull'osso temporale

    Get PDF
    Nel presente articolo si presenta un simulatore per l’addestramento alla chirurgia dell’osso temporale. Il sistema si basa su modelli volumetrici direttamente derivati da dati 3D di TAC e MR. Il ritorno di sensazioni in tempo reale viene fornito all’utente per mezzo di tecniche di rendering volumetrico e di modellazione di sensazioni aptiche. I vincoli nelle prestazioni imposti dal sistema percettivo umano sono soddisfatti sfruttando il parallelismo attraverso il disaccoppiamento della simulazione su una piattaforma di PC multi-processore. In quest’articolo, vengono descritti in dettaglio i componenti del sistema e lo stato attuale dell’integrazione dei medesimi

    Different Flour Microbial Communities Drive to Sourdoughs Characterized by Diverse Bacterial Strains and Free Amino Acid Profiles

    Get PDF
    This work aimed to investigate whether different microbial assemblies in flour may influence the microbiological and biochemical characteristics of traditional sourdough. To reach this purpose, members of lactic acid bacteria, enterobacteria, and yeasts were isolated from durum wheat flour. Secondly, the isolated microorganisms (Pediococcus pentosaceus, Saccharomyces cerevisiae, Pantoea agglomerans, and Escherichia hermannii) were inoculated in doughs prepared with irradiated flour (gamma rays at 10 kGy), so that eight different microbial assemblies were obtained. Two non-inoculated controls were prepared, one of which (C-IF) using irradiated flour and the other (C) using non-irradiated flour. As shown by plate counts, irradiation of flour caused total inactivation of yeasts and a decrease of all the other microbial populations. However, acidification occurred also in the dough C-IF, due to metabolic activity of P. pentosaceus that had survived irradiation. After six fermentations, P. pentosaceus was the dominant lactic acid bacterium species in all the sourdoughs produced with irradiated flour (IF). Yet, IF-based sourdoughs broadly differed from each other in terms of strains of P. pentosaceus, probably due to the different microorganisms initially inoculated. Quantitative and qualitative differences of free amino acids concentration were found among the sourdoughs, possibly because of different microbial communities. In addition, as shown by culture-independent analysis (16S metagenetics), irradiation of flour lowered and modified microbial diversity of sourdough ecosystem

    Lactic acid fermentation as a tool to enhance the antioxidant properties of <i>Myrtus communis</i> berries

    Get PDF
    Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no studies have already considered the use of the lactic acid fermentation to enhance the functional features of M. communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on murine fibroblasts, and the profile of phenol compounds was characterized. Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3 mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the esterase activities of L. plantarum. Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional food dietary supplements or pharmaceutical preparations

    Towards a psychophysical evaluation of a surgical simulator for bone-burring

    Get PDF
    The CRS4 experimental bone-burr simulator implements visual and haptic effects through the incorporation of a physics-based contact model and patient-specific data. Psychophysical tests demonstrate that, despite its simplified model and its inherent technological constraints, the simulator can articulate material differences, and that its users can learn to associate virtual bone with real bone material. Tests addressed both surface probing and interior drilling task. We also explore a haptic contrast sensitivity function based on the model s two main parameters: an elastic constant and an erosion factor. Both parameters manifest power-law-like sensitivity with respective exponents of around two and three. Further tests may reveal how well simulator users perceive fine differences in bone material, like those encountered while drilling through real volume boundaries.139-14

    Mastoidectomy simulation with combined visual and haptic feedback

    Get PDF
    Mastoidectomy is one of the most common surgical procedures relating to the petrous bone. In this paper we describe our preliminary results in the realization of a virtual reality mastoidectomy simulator. Our system is designed to work on patient-specific volumetric object models directly derived from 3D CT and MRI images. The paper summarizes the detailed task analysis performed in order to define the system requirements, introduces the architecture of the prototype simulator, and discusses the initial feedback received from selected end users.17-2

    An interactive 3D medical visualization system based on a light field display

    Get PDF
    This paper presents a prototype medical data visualization system exploiting a light field display and custom direct volume rendering techniques to enhance understanding of massive volumetric data, such as CT, MRI, and PET scans. The system can be integrated with standard medical image archives and extends the capabilities of current radiology workstations by supporting real-time rendering of volumes of potentially unlimited size on light field displays generating dynamic observer-independent light fields. The system allows multiple untracked naked-eye users in a sufficiently large interaction area to coherently perceive rendered volumes as real objects, with stereo and motion parallax cues. In this way, an effective collaborative analysis of volumetric data can be achieved. Evaluation tests demonstrate the usefulness of the generated depth cues and the improved performance in understanding complex spatial structures with respect to standard techniques.883-893Pubblicat

    Extension of the Shelf-Life of Fresh Pasta Using Chickpea Flour Fermented with Selected Lactic Acid Bacteria

    Get PDF
    Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate

    Extension of the shelf-life of fresh pasta using chickpea flour fermented with selected lactic acid bacteria

    Get PDF
    Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate
    corecore