302 research outputs found

    The Walking Brain: factors influencing human gait

    Get PDF
    Human walking is a standardized, repeatable and rhythmic locomotor act, with biomechanical patterns reported as roughly common to all healthy individuals. However, some gait patterns could be affected by cognitive, social and cultural factors. This mini-review aims at investigating top-down related differences in walking healthy patterns due to the above factors. The reviewed literature reported that socio-economic factors are at the basis of differences in pedestrian walking speed, related to the pace of life: faster speed was found in industrialized countries than in developing ones. Furthermore, it was suggested that the ancient division between men and women in hunters and gatherers, respectively, could be at the basis of gender visual differences and, in turn, in upper body movements during walking, with women walking with a more stable head. Interestingly, changes in gait speed did not affect cortical resources needed for spatial cognition, whereas a cognitive task may affect the gait speed. The most reliable parameters, poorly affected by psycho-social factors, resulted the symmetry of limb movements and the ratio between stance and swing duration. The latter was found close to the irrational number called golden ratio, providing a fractal structure to human gait cycle. Both these parameters are at the basis of the harmony of human walking, a feature maintained also in presence of top-down driven gait modifications

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Physiological responses and energy cost of walking on the Gait Trainer with and without body weight support in subacute stroke patients

    Get PDF
    BACKGROUND: Robotic-assisted walking after stroke provides intensive task-oriented training. But, despite the growing diffusion of robotic devices little information is available about cardiorespiratory and metabolic responses during electromechanically-assisted repetitive walking exercise. Aim of the study was to determine whether use of an end-effector gait training (GT) machine with body weight support (BWS) would affect physiological responses and energy cost of walking (ECW) in subacute post-stroke hemiplegic patients. METHODS: Participants: six patients (patient group: PG) with hemiplegia due to stroke (age: 66 ± 15y; time since stroke: 8 ± 3 weeks; four men) and 6 healthy subjects as control group (CG: age, 76 ± 7y; six men). Interventions: overground walking test (OWT) and GT-assisted walking with 0%, 30% and 50% BWS (GT-BWS0%, 30% and 50%). Main Outcome Measures: heart rate (HR), pulmonary ventilation, oxygen consumption, respiratory exchange ratio (RER) and ECW. RESULTS: Intervention conditions significantly affected parameter values in steady state (HR: p = 0.005, V’E: p = 0.001, V'O(2): p < 0.001) and the interaction condition per group affected ECW (p = 0.002). For PG, the most energy (V’O(2) and ECW) demanding conditions were OWT and GT-BWS0%. On the contrary, for CG the least demanding condition was OWT. On the GT, increasing BWS produced a decrease in energy and cardiac demand in both groups. CONCLUSIONS: In PG, GT-BWS walking resulted in less cardiometabolic demand than overground walking. This suggests that GT-BWS walking training might be safer than overground walking training in subacute stroke patients

    Evaluation of cervical posture improvement of children with cerebral palsy after physical therapy based on head movements and serious games

    Get PDF
    Background: This paper presents the preliminary results of a novel rehabilitation therapy for cervical and trunk control of children with cerebral palsy (CP) based on serious videogames and physical exercise. Materials: The therapy is based on the use of the ENLAZA Interface, a head mouse based on inertial technology that will be used to control a set of serious videogames with movements of the head. Methods: Ten users with CP participated in the study. Whereas the control group (n=5) followed traditional therapies, the experimental group (n=5) complemented these therapies with a series of ten sessions of gaming with ENLAZA to exercise cervical flexion-extensions, rotations and inclinations in a controlled, engaging environment. Results: The ten work sessions yielded improvements in head and trunk control that were higher in the experimental group for Visual Analogue Scale, Goal Attainment Scaling and Trunk Control Measurement Scale (TCMS). Significant differences (27% vs. 2% of percentage improvement) were found between the experimental and control groups for TCMS (p<0.05). The kinematic assessment shows that there were some improvements in the active and the passive range of motion. However, no significant differences were found pre- and post-intervention. Conclusions:Physical therapy that combines serious games with traditional rehabilitation could allow children with CP to achieve larger function improvements in the trunk and cervical regions. However, given the limited scope of this trial (n=10) additional studies are needed to corroborate this hypothesis

    Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial

    Get PDF
    Background: Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive robotic rollator (i-Walker) on walking, balance, gait stability and falls in a community setting in patients with mild subacute stroke. Methods: Forty-four patients were randomly assigned to two different groups that received the same therapy in two daily 40-min sessions 5 days a week for 4 weeks. Twenty sessions of standard therapy were performed by both groups. In the other 20 sessions the subjects enrolled in the i-Walker-Group (iWG) performed with the i-Walker and the Control-Group patients (CG) performed the same amount of conventional walking oriented therapy. Clinical and instrumented gait assessments were made pre- and post-treatment. The follow-up observation consisted of recording the number of fallers in the community setting after 6 months. Results: Treatment effectiveness was higher in the iWG group in terms of balance improvement (Tinetti: 68.4 ± 27.6 % vs. 48.1 ± 33.9 %, p= 0.033) and 10-m and 6-min timed walking tests (significant interaction between group and time: F(1,40) = 14.252, p = 0.001; and F (1,40) = 7.883, p = 0.008, respectively). When measured, latero-lateral upper body accelerations were reduced in iWG (F= 4.727, p= 0.036), suggesting increased gait stability, which was supported by a reduced number of falls at home. Conclusions: A robotic servo-assisted i-Walker improved walking performance and balance in patients affected by mild/moderate stroke, leading to increased gait stability and reduced falls in the community.Peer ReviewedPostprint (published version

    Prevalence and time course of post-stroke pain: A multicenter prospective hospital-based study

    Get PDF
    OBJECTIVE: Pain prevalence data for patients at various stages after stroke. DESIGN: Repeated cross-sectional, observational epidemiological study. SETTING: Hospital-based multicenter study. SUBJECTS: Four hundred forty-three prospectively enrolled stroke survivors. METHODS: All patients underwent bedside clinical examination. The different types of post-stroke pain (central post-stroke pain, musculoskeletal pains, shoulder pain, spasticity-related pain, and headache) were diagnosed with widely accepted criteria during the acute, subacute, and chronic stroke stages. Differences among the three stages were analyzed with χ(2)-tests. RESULTS: The mean overall prevalence of pain was 29.56% (14.06% in the acute, 42.73% in the subacute, and 31.90% in the chronic post-stroke stage). Time course differed significantly according to the various pain types (P < 0.001). The prevalence of musculoskeletal and shoulder pain was higher in the subacute and chronic than in the acute stages after stroke; the prevalence of spasticity-related pain peaked in the chronic stage. Conversely, headache manifested in the acute post-stroke stage. The prevalence of central post-stroke pain was higher in the subacute and chronic than in the acute post-stroke stage. Fewer than 25% of the patients with central post-stroke pain received drug treatment. CONCLUSIONS: Pain after stroke is more frequent in the subacute and chronic phase than in the acute phase, but it is still largely undertreated

    Hidden time-patterns in cyclic human movements: a matter of temporal Fibonacci sequence generation and harmonization

    Get PDF
    Fibonacci sequences are sequences of numbers whose first two elements are 0, 1, and such that, starting from the third number, every element of the sequence is the sum of the previous two. They are of finite length when the number of elements of the sequence is finite. Furthermore, Fibonacci sequences are named generalized Fibonacci sequences when they are generated by two positive integers—called seeds—that do not necessarily equal 0 and 1. This relaxation provides the analyst with larger degrees of freedom if the elements of the Fibonacci sequences have to refer to the durations of the sub-phases of a physical movement or gesture that differ from 0 and 1. Indeed, by taking inspiration from their use of symmetric walking—where the stance duration is the sum of the double support and swing durations and, in turn, the duration of the entire gait cycle is the sum of the stance and swing durations—, generalized Fibonacci sequences of finite length have been very recently adopted to extend the resulting original walking gait characterization to gestures in elite swimmers and tennis players, by accordingly associating the durations of the sub-phases of the gesture to the elements of such sequences. This holds true within movement-automatization-allowable scenarios, namely, within scenarios in which no external disturbances or additional constraints affect the natural repeatability of movements: at a comfortable speed in walking, at a medium pace in swimming, and under no need for lateral/frontal movements of the entire body in tennis forehand execution or no wind in the serve shot. Now, in such sequences of sub-phase durations of a physical movement or gesture, the golden ratio has been further found to characterize hidden self-similar patterns, namely, patterns in which all the ratios between two consecutive elements of the sequence are surprisingly equal, thus representing a harmonic and mostly aesthetical gesture that admits a perfectly self-similar sub-phase partition in terms of time durations. In such a case, the larger scale structure within the gesture resembles the smaller scale structure so that the brain can aesthetically resort to the minimum amount of information for the movement temporal design. In the framework of how cognitive factors such as working memory and executive control facilitate motor learning and adaptation, this paper addresses, for the first time in the literature, the open problem of providing a complete mathematical understanding of the automatic generation process at the root of such hidden Fibonacci sequence-based and self-similar patterns appearing in the aforementioned cyclic human movements. Data referring to walking and tennis playing are used to illustrate the effectiveness of the proposed approach

    Effects of Visual Deprivation on Gait Dynamic Stability

    Get PDF
    Vision can improve bipedal upright stability during standing and affect spatiotemporal parameters during walking. However, little is known about the effects of visual deprivation on gait dynamic stability. We have tested 28 subjects during walking under two different visual conditions, full vision (FV) and no vision (NV), measuring their upper body accelerations. Lower accelerations were found in NV for the reduced walking speed. However, the normalized accelerations were higher in the NV than in the FV condition, both in anteroposterior (1.05 ± 0.21 versus 0.88 ± 0.16, P = 0.001) and laterolateral (0.99 ± 0.26 versus 0.78 ± 0.19, P < 0.001) directions. Vision also affected the gait anteroposterior harmony (P = 0.026) and, interacting with the environment, also the latero-lateral one (P = 0.017). Directly (as main factor of the ANOVA) or indirectly (by means of significant interactions with other factors), vision affected all the measured parameters. In conclusion, participants showed an environment-dependent reduction of upper body stability and harmony when deprived by visual feedback
    corecore