628 research outputs found
Causes and Consequences of Thyroid Dysfunction throughout Life: a population-based and genetic approach
__Abstract__
Adequate thyroid hormone (TH) levels are essential for normal growth and differentiation,
for the regulation of energy metabolism, and for the physiological function of
virtually all human tissues. This is illustrated by the well-known effects of hypo- and
hyperthyroidism. In addition, more recent studies show that also minor variation in
serum TH levels, even within the normal range, can have important effects on clinical
endpoints, such as bone mineral density, atrial fibrillation, metabolic syndrome
(3) and cardiovascular mortality
Development and Validation of on-board systems control laws
Purpose - The purpose of this paper is to describe the tool and procedure developed in order to design the control laws of several UAV (Unmanned Aerial Vehicle) sub-systems. The authors designed and developed the logics governing: landing gear, nose wheel steering, wheel braking, and fuel system. Design/methodology/approach - This procedure is based on a general purpose, object-oriented, simulation tool. The development method used is based on three-steps. The main structure of the control laws is defined through flow charts; then the logics are ported to ANSI-C programming language; finally the code is implemented inside the status model. The status model is a Matlab-Simulink model, which uses an embedded Matlab-function to model the FCC (Flight Control Computer). The core block is linked with the components, but cannot access their internal model. Interfaces between FCCs and system components in the model reflect real system ones. Findings - The user verifies systems' reactions in real time, through the status model. Using block-oriented approach, development of the control laws and integration of several systems is faster. Practical implications - The tool aims to test and validate the control laws dynamically, helping specialists to find out odd logics or undesired responses, during the pre-design. Originality/value - The development team can test and verify the control laws in various failure scenarios. This tool allows more reliable and effective logics to be produced, which can be directly used on the system
Integrated data capturing requirements for 3D semantic modelling of cultural heritage: the inception protocol
The generation of high quality 3D models can be still very time-consuming and expensive, and the outcome of digital reconstructions is frequently provided in formats that are not interoperable, and therefore cannot be easily accessed. This challenge is even more crucial for complex architectures and large heritage sites, which involve a large amount of data to be acquired, managed and enriched by metadata.
In this framework, the ongoing EU funded project INCEPTION – Inclusive Cultural Heritage in Europe through 3D semantic modelling proposes a workflow aimed at the achievements of efficient 3D digitization methods, post-processing tools for an enriched semantic modelling, web-based solutions and applications to ensure a wide access to experts and non-experts.
In order to face these challenges and to start solving the issue of the large amount of captured data and time-consuming processes in the production of 3D digital models, an Optimized Data Acquisition Protocol (DAP) has been set up. The purpose is to guide the processes of digitization of cultural heritage, respecting needs, requirements and specificities of cultural assets
Enhancing Heritage fruition through 3D semantic modelling and digital tools: the INCEPTION project
The INCEPTION project, “Inclusive Cultural Heritage in Europe through 3D Semantic Modelling”, started in June 2015 and lasting four years, aims at developing advanced 3D modelling for accessing and understanding European cultural assets. One of the main challenges of the project is to close the gap between effective user experiences of Cultural Heritage via digital tools and representations, and the enrichment of the scientific knowledge. Within this framework, the INCEPTION project goals are consistently aligned while accomplishing the main objectives of accessing, understanding and strengthening European cultural heritage by means of enriched 3D models. At the end of the third year of activity, the project is now facing different challenging actions starting from already developed advancement in 3D data capturing and holistic digital documentation, under interdisciplinary and cross-cutting fields of knowledge. In this direction, the approach and the methodology for semantic organization and data management toward H-BIM modelling will be presented, as well as a preliminary nomenclature for semantic enrichment of heritage 3D models. According to the overall INCEPTION workflow, the H-BIM modelling procedure starts with documenting user needs, including experts and non-experts. The identification of the Cultural Heritage buildings semantic ontology and data structure for information catalogue will allow the integration of semantic attributes with hierarchically and mutually aggregated 3D digital geometric models for management of heritage information
Handling huge and complex 3D geometries with Semantic Web technology
In INCEPTION, a European collaborative research project, a Heritage BIM (H-BIM) ontology is being developed to store all relevant semantic data concerning cultural heritage objects. Similar to other projects dealing with storing semantics, one of the major questions is whether, and if yes, how should geometry be stored using semantic web technology. The INCEPTION cross-disciplinary research consortium chose to allow the storage of all relevant
geometric information using semantic web technology. The alternative is to store geometry in a different way, or storing only the aggregated parts of geometry, for example through bounding box representations
Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease
Thyroid function and age-related macular degeneration: A prospective population-based cohort study - the Rotterdam Study
Background: In animal models, lack of thyroid hormone is associated with cone photoreceptor preservation, while administration of high doses of active thyroid hormone leads to deterioration. The association between thyroid function and age-related macular degeneration (AMD) has not been investigated in the general population. Methods: Participants of age ≥55 years from the Rotterdam Study with thyroid-stimulating hormone (TSH) and/or free thyroxine (FT4) measurements and AMD assessment were included. We conducted age- and sex-adjusted Cox proportional hazards models to explore the association of TSH or FT4 with AMD, in the full range and in those with TSH (0.4-4.0 mIU/L) and/or FT4 in normal range (11-25 pmol/L). Cox proportional hazards models were performed for the association of TSH or FT4 with retinal pigment alterations (RPA), as an early marker of retinal changes. Multivariable models additionally included cardiovascular risk factors and thyroid peroxidase antibodies positivity. We also performed stratification by age and sex. A bidirectional look-up in genome-wide association study (GWAS) data for thyroid parameters and AMD was performed. Single nucleotide polymorphisms (SNPs) that are significantly associated with both phenotypes were identified. Results: We included 5,573 participants with a median follow-up of 6.9 years (interquartile range 4.4-10.8 years). During follow-up 805 people developed AMD. TSH levels were not associated with increased risk of AMD. Within normal range of FT4, participants in the highest FT4 quintile had a 1.34-fold increased risk of developing AMD, compared to individuals in the middle group (95% confidence interval [CI] 1.07-1.66). Higher FT4 values in the full range were associated with a higher risk of AMD (hazard ratio 1.04, CI, 1.01-1.06 per 1 pmol/L increase). Higher FT4 levels were similarly associated with a higher risk of RPA. Restricting analyses to euthyroid individuals, additional multivariable models, and stratification did not change estimates. We found a SNP (rs943080) in the VEGF-A gene, associated with AMD, to be significant in the TSH GWAS (P = 1.2 x 10-4). Adding this SNP to multivariable models did not change estimates. Conclusions: Higher FT4 values are associated with increased risk of AMD - even in euthyroid individuals - and increased risk of RPA. Our data suggest an important role of thyroid hormone in pathways leading to AMD
Chapter H-BIM semantico come strumento di documentazione inclusiva e accesso al Nuovo Catalogo Digitale dei Beni Culturali: il caso studio di Santa Maria delle Vergini a Macerata
The 43rd UID conference, held in Genova, takes up the theme of ‘Dialogues’ as practice and debate on many fundamental topics in our social life, especially in these complex and not yet resolved times. The city of Genova offers the opportunity to ponder on the value of comparison and on the possibilities for the community, naturally focused on the aspects that concern us, as professors, researchers, disseminators of knowledge, or on all the possibile meanings of the discipline of representation and its dialogue with ‘others’, which we have broadly catalogued in three macro areas: History, Semiotics, Science / Technology. Therefore, “dialogue” as a profitable exchange based on a common language, without which it is impossible to comprehend and understand one another; and the graphic sign that connotes the conference is the precise transcription of this concept: the title ‘translated’ into signs, derived from the visual alphabet designed for the visual identity of the UID since 2017. There are many topics which refer to three macro sessions: - Witnessing (signs and history) - Communicating (signs and semiotics) - Experimenting (signs and sciences) Thanks to the different points of view, an exceptional resource of our disciplinary area, we want to try to outline the prevailing theoretical-operational synergies, the collaborative lines of an instrumental nature, the recent updates of the repertoires of images that attest and nourish the relations among representation, history, semiotics, sciences
PestOn: an ontology to make pesticides information easily accessible and interoperable
Globally present regulations treat pesticide use with a light touch, leaving in the field users with scarce reporting requirements, although numerous initiatives that have been undertaken to reduce risks from pesticide product use and to provide the public with sufficient level of information. Nevertheless, food chain actors are not required to disclose much information on hazards, with many safety aspects laying undervalued. This has resulted in information gaps concerning production, authorization, use, and impact of pesticide products for both consumer and regulatory stakeholders. Often the public cannot directly access relevant information about pesticides with respect to retail products or their farm origins. National authorities have poor legal tools to efficiently carry out complete investigations and take action to mitigate pesticide externalities. Aimed at bridging these gaps, the ontology PestOn was created to directly access pesticide products information, making existing data more useful, and improve the flow of information in food value chains. This demonstration project shows how to integrate various already existing ontologies to maximize interoperability with related information on the semantic web. As a semantic tool, it can help in addressing challenges related to food quality, food safety and information disclosure, opening up to several opportunities for food value chain actors and the public. In its first version, the ontology PestOn accounts for more than 16,000 pesticide products authorized in Italy during the last 50 years
Interpreting Environmental Impacts Resulting from Fruit Cultivation in a Business Innovation Perspective
Sustainability of food production is a major concern today. This study assessed the environmental impact of fruit production and discussed business implications for sustainability. Data were collected from three agricultural enterprises growing six species of fruit, extending over a total of 34 hectares, and producing roughly one thousand tons of fruit per year. The results of the life-cycle assessment (LCA) showed that several production activities heavily impact the environment: in descending order of absolute terms, fruit refrigeration, agronomic operations, irrigation, and fertilizer use were recognized as the most impacting. Other activities, including agrochemical applications, planting, and plastic use for harvesting and packaging, showed overall lower impacts. The high environmental impact associated with most of the production activities emphasizes the need to make the primary food production cleaner, more resource-efficient, and less energy-intensive. Affordable incremental innovations able to reshape the way business is conducted in the context of primary food production are proposed, mainly relying on process rationalization and digital switchover. The analysis of the business path toward increased sustainability involves strategic issues, ranging from the reshaping of production processes to relationships with consumers, affecting value proposition, creation, and capture
- …
