19 research outputs found

    Is three the magic number? The role of ergonomic principles in cross country comprehension of road traffic signs

    Get PDF
    Road sign comprehension plays an important part in road safety management, particularly for those drivers who are travelling in an unfamiliar country. Previous research has established that comprehension can be improved if signs are designed to adhere to ergonomic principles. However, it may be difficult for sign designers to incorporate all the principles into a single sign and may thus have to make a judgement as to the most effective ones. This study surveyed drivers in three countries to ascertain their understanding of a range of road signs, each of which conformed in varying degrees and combinations to the ergonomic principles. We found that using three of the principles was the most effective and that the most important one was that relating to standardisation; the colours and shapes used were key to comprehension. Other concepts which related to physical and spatial characteristics were less important, whilst conceptual compatibility did not aid comprehension at all. Practitioner Summary: This study explores how road sign comprehension can be improved using ergonomic principles, with particular reference to cross-border drivers. It was found that comprehension can be improved significantly if standardisation is adhered to and if at least three principles are used

    The Conley index for maps in absence of compactness

    Get PDF
    SynopsisWe construct the Conley index for maps. We do not assume any compactness of map or space. We prove the Ważewski property, additivity property and continuation property.</jats:p

    Serum from the Human Fracture Hematoma Contains a Potent Inducer of Neutrophil Chemotaxis

    No full text
    A controlled local inflammatory response is essential for adequate fracture healing. However, the current literature suggests that local and systemic hyper-inflammatory conditions after major trauma induce increased influx of neutrophils into the fracture hematoma (FH) and impair bone regeneration. Inhibiting neutrophil chemotaxis towards the FH without compromising the hosts’ defense may therefore be a target of future therapies that prevent impairment of fracture healing after major trauma. We investigated whether chemotaxis of neutrophils towards the FH could be studied in vitro. Moreover, we determined whether chemotaxis of neutrophils towards the FH was mediated by the CXCR1, CXCR2, FPR, and C5aR receptors. Human FHs were isolated during an open reduction internal fixation (ORIF) procedure within 3 days after trauma and spun down to obtain the fracture hematoma serum. Neutrophil migration towards the FH was studied using Ibidi™ Chemotaxis3D μ-Slides and image analysis of individual neutrophil tracks was performed. Our study showed that the human FH induces significant neutrophil chemotaxis, which was not affected by blocking CXCR1 and CXCR2. In contrast, neutrophil chemotaxis towards the FH was significantly inhibited by chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS), which blocks FPR and C5aR. Blocking only C5aR with CHIPSΔ1F also significantly inhibited neutrophil chemotaxis towards the FH. Our finding that neutrophil chemotaxis towards the human FH can be blocked in vitro using CHIPS may aid the development of therapies that prevent impairment of fracture healing after major trauma

    Serum from the Human Fracture Hematoma Contains a Potent Inducer of Neutrophil Chemotaxis

    No full text
    A controlled local inflammatory response is essential for adequate fracture healing. However, the current literature suggests that local and systemic hyper-inflammatory conditions after major trauma induce increased influx of neutrophils into the fracture hematoma (FH) and impair bone regeneration. Inhibiting neutrophil chemotaxis towards the FH without compromising the hosts’ defense may therefore be a target of future therapies that prevent impairment of fracture healing after major trauma. We investigated whether chemotaxis of neutrophils towards the FH could be studied in vitro. Moreover, we determined whether chemotaxis of neutrophils towards the FH was mediated by the CXCR1, CXCR2, FPR, and C5aR receptors. Human FHs were isolated during an open reduction internal fixation (ORIF) procedure within 3 days after trauma and spun down to obtain the fracture hematoma serum. Neutrophil migration towards the FH was studied using Ibidi™ Chemotaxis3D μ-Slides and image analysis of individual neutrophil tracks was performed. Our study showed that the human FH induces significant neutrophil chemotaxis, which was not affected by blocking CXCR1 and CXCR2. In contrast, neutrophil chemotaxis towards the FH was significantly inhibited by chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS), which blocks FPR and C5aR. Blocking only C5aR with CHIPSΔ1F also significantly inhibited neutrophil chemotaxis towards the FH. Our finding that neutrophil chemotaxis towards the human FH can be blocked in vitro using CHIPS may aid the development of therapies that prevent impairment of fracture healing after major trauma
    corecore