1,070 research outputs found

    On the fundamental limitations of performance for distributed decision-making in robotic networks

    Full text link
    This paper studies fundamental limitations of performance for distributed decision-making in robotic networks. The class of decision-making problems we consider encompasses a number of prototypical problems such as average-based consensus as well as distributed optimization, leader election, majority voting, MAX, MIN, and logical formulas. We first propose a formal model for distributed computation on robotic networks that is based on the concept of I/O automata and is inspired by the Computer Science literature on distributed computing clusters. Then, we present a number of bounds on time, message, and byte complexity, which we use to discuss the relative performance of a number of approaches for distributed decision-making. From a methodological standpoint, our work sheds light on the relation between the tools developed by the Computer Science and Controls communities on the topic of distributed algorithms.Comment: Will be presented at CDC201

    Optimal Sampling-Based Motion Planning under Differential Constraints: the Driftless Case

    Full text link
    Motion planning under differential constraints is a classic problem in robotics. To date, the state of the art is represented by sampling-based techniques, with the Rapidly-exploring Random Tree algorithm as a leading example. Yet, the problem is still open in many aspects, including guarantees on the quality of the obtained solution. In this paper we provide a thorough theoretical framework to assess optimality guarantees of sampling-based algorithms for planning under differential constraints. We exploit this framework to design and analyze two novel sampling-based algorithms that are guaranteed to converge, as the number of samples increases, to an optimal solution (namely, the Differential Probabilistic RoadMap algorithm and the Differential Fast Marching Tree algorithm). Our focus is on driftless control-affine dynamical models, which accurately model a large class of robotic systems. In this paper we use the notion of convergence in probability (as opposed to convergence almost surely): the extra mathematical flexibility of this approach yields convergence rate bounds - a first in the field of optimal sampling-based motion planning under differential constraints. Numerical experiments corroborating our theoretical results are presented and discussed

    Control of Robotic Mobility-On-Demand Systems: a Queueing-Theoretical Perspective

    Full text link
    In this paper we present and analyze a queueing-theoretical model for autonomous mobility-on-demand (MOD) systems where robotic, self-driving vehicles transport customers within an urban environment and rebalance themselves to ensure acceptable quality of service throughout the entire network. We cast an autonomous MOD system within a closed Jackson network model with passenger loss. It is shown that an optimal rebalancing algorithm minimizing the number of (autonomously) rebalancing vehicles and keeping vehicles availabilities balanced throughout the network can be found by solving a linear program. The theoretical insights are used to design a robust, real-time rebalancing algorithm, which is applied to a case study of New York City. The case study shows that the current taxi demand in Manhattan can be met with about 8,000 robotic vehicles (roughly 60% of the size of the current taxi fleet). Finally, we extend our queueing-theoretical setup to include congestion effects, and we study the impact of autonomously rebalancing vehicles on overall congestion. Collectively, this paper provides a rigorous approach to the problem of system-wide coordination of autonomously driving vehicles, and provides one of the first characterizations of the sustainability benefits of robotic transportation networks.Comment: 10 pages, To appear at RSS 201

    Additive Steiner triple systems

    Get PDF
    A Steiner triple system is additive if it can be embedded in a commutative group in such a way that the sum of the three points in any given block is zero. In this paper we show that a Steiner triple system is additive if and only if it is the point-line design of either a projective space PG(d,2) over GF(2) or an affine space AG(d,3) over GF(3), for d ≥ 1. Our proof is based on algebraic arguments and on the combinatorial characterization of finite projective geometries in terms of Veblen points
    corecore