329 research outputs found

    Localization landscape theory of disorder in semiconductors I: Theory and modeling

    Full text link
    We present here a model of carrier distribution and transport in semiconductor alloys accounting for quantum localization effects in disordered materials. This model is based on the recent development of a mathematical theory of quantum localization which introduces for each type of carrier a spatial function called \emph{localization landscape}. These landscapes allow us to predict the localization regions of electron and hole quantum states, their corresponding energies, and the local densities of states. We show how the various outputs of these landscapes can be directly implemented into a drift-diffusion model of carrier transport and into the calculation of absorption/emission transitions. This creates a new computational model which accounts for disorder localization effects while also capturing two major effects of quantum mechanics, namely the reduction of barrier height (tunneling effect), and the raising of energy ground states (quantum confinement effect), without having to solve the Schr\"odinger equation. Finally, this model is applied to several one-dimensional structures such as single quantum wells, ordered and disordered superlattices, or multi-quantum wells, where comparisons with exact Schr\"odinger calculations demonstrate the excellent accuracy of the approximation provided by the landscape theory.Comment: 17 pages, 18 figures, 3 table

    Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes

    Full text link
    This paper introduces a novel method to account for quantum disorder effects into the classical drift-diffusion model of semiconductor transport through the localization landscape theory. Quantum confinement and quantum tunneling in the disordered system change dramatically the energy barriers acting on the perpendicular transport of heterostructures. In addition they lead to percolative transport through paths of minimal energy in the 2D landscape of disordered energies of multiple 2D quantum wells. This model solves the carrier dynamics with quantum effects self-consistently and provides a computationally much faster solver when compared with the Schr\"odinger equation resolution. The theory also provides a good approximation to the density of states for the disordered system over the full range of energies required to account for transport at room-temperature. The current-voltage characteristics modeled by 3-D simulation of a full nitride-based light-emitting diode (LED) structure with compositional material fluctuations closely match the experimental behavior of high quality blue LEDs. The model allows also a fine analysis of the quantum effects involved in carrier transport through such complex heterostructures. Finally, details of carrier population and recombination in the different quantum wells are given.Comment: 14 pages, 16 figures, 6 table

    Laser radio transmitter

    Full text link
    Since the days of Hertz, radio transmitters have evolved from rudimentary circuits emitting around 50 MHz to modern ubiquitous Wi-Fi devices operating at gigahertz radio bands. As wireless data traffic continues to increase there is a need for new communication technologies capable of high-frequency operation for high-speed data transfer. Here we give a proof of concept of a new compact radio frequency transmitter based on a semiconductor laser frequency comb. In this laser, the beating among the coherent modes oscillating inside the cavity generates a radio frequency current, which couples to the electrodes of the device. We show that redesigning the top contact of the laser allows one to exploit the internal oscillatory current to drive an integrated dipole antenna, which radiates into free space. In addition, direct modulation of the laser current permits encoding a signal in the radiated radio frequency carrier. Working in the opposite direction, the antenna can receive an external radio frequency signal, couple it to the active region and injection lock the laser. These results pave the way to new applications and functionality in optical frequency combs, such as wireless radio communication and wireless synchronization to a reference source

    Concordance and complementarity in IP instruments

    Get PDF
    This work investigates the relationship between proxies of innovation activities, such as patents and trademarks, and firm performance in terms of revenues, growth and profitability. By resorting to the virtual universe of Italian manufacturing affirms this work provides a rather complete picture of the Intellectual Property (IP) strategies pursued by Italian firms, in terms of patents and trademarks, and we study whether the two instruments for protecting IP exhibit complementarity or substitutability. In addition, and to our knowledge novel, we propose a measure of concordance (or proximity) between the patents and trademarks owned by the same firm and we then investigate whether such concordance exert any effect on performance.JRC.B.3 - Territorial Developmen
    corecore