148 research outputs found
Magnetic resonance imaging for preoperative diagnosis in third molar surgery: a systematic review
In recent years, magnetic resonance imaging (MRI) has made great strides through various technical improvements and new sequences, which have made it one of the most promising and leading imaging techniques in the head and neck region. As modern imaging techniques in dentistry aim to reduce radiation exposure, this systematic review evaluated the possibilities, advantages, and disadvantages of advanced imaging diagnostics using dental MRI and its evidence for clinical indications and limitations relevant to mandibular third molar (MTM) surgery. Two reviewers performed multiple database searches (PubMed MEDLINE, EMBASE, Biosis, and Cochrane databases) following the PICOS search strategy using medical subject headings (MeSH) terms, keywords, and their combinations. Ten studies were included in this systematic review. By providing high spatial resolution and excellent soft tissue contrast, black bone MRI sequences such as 3D Double Echo Steady State (DESS) and 3D Short Tau Inversion Recovery (STIR) imaging protocols have the potential to become a valuable alternative to cone-beam computed tomography (CBCT) in future dental clinical routines. Overall, radiation-free MRI represents another step toward personalized dentistry and improved decision-making that avoids ineffectiveness and minimizes risks in oral surgery by taking into account additional patient-side factors such as comorbidity, anatomical norm variations, and imaging biomarkers
Brain network for small-scale features in active touch
An important tactile function is the active detection of small-scale features, such as edges or asperities, which depends on fine hand motor control. Using a resting-state fMRI paradigm, we sought to identify the functional connectivity of the brain network engaged in mapping tactile inputs to and from regions engaged in motor preparation and planning during active touch. Human participants actively located small-scale tactile features that were rendered by a computer-controlled tactile display. To induce rapid perceptual learning, the contrast between the target and the surround was reduced whenever a criterion level of success was achieved, thereby raising the task difficulty. Multiple cortical and subcortical neural connections within a parietal-cerebellar-frontal network were identified by correlating behavioral performance with changes in functional connectivity. These cortical areas reflected perceptual, cognitive, and attention-based processes required to detect and use small-scale tactile features for hand dexterity
Lateral Geniculate Nucleus Volume Determined on MRI Correlates With Corresponding Ganglion Cell Layer Loss in Acquired Human Postgeniculate Lesions
Purpose: To quantitatively assess lateral geniculate nucleus (LGN) volume loss in the presence of lesions in the postgeniculate pathway and its correlation with optical coherence tomography retinal parameters.
Methods: This was a case control study of patients recruited at the University Hospital Zurich, Switzerland. Nine patients who were suffering from lesions in the postgeniculate pathway acquired at least 3 months earlier participated. Retinal parameters were analyzed using spectral domain optical coherence tomography and a newly developed magnetic resonance imaging protocol with improved contrast to noise ratio was applied to measure LGN volume.
Results: The affected LGN volume in the patients (mean volume 73.89 ± 39.08 mm3) was significantly smaller compared with the contralateral unaffected LGN (mean volume 131.43 ± 12.75 mm3), as well as compared with healthy controls (mean volume 107 ± 24.4 mm3). Additionally, the ganglion cell layer thickness corresponding with the affected versus unaffected side within the patient group differed significantly (mean thickness 40.5 ± 4.11 µm vs 45.7 ± 4.79 µm) compared with other retinal parameters. A significant linear correlation could also be shown between relative LGN volume loss and ganglion cell layer thickness decrease.
Conclusions: Corresponding LGN volume reduction could be shown in patients with postgeniculate lesions using a newly developed magnetic resonance imaging protocol. LGN volume decrease correlated with ganglion cell layer thickness reduction as a sign of trans-synaptic retrograde neuronal degeneration
Visualization of Inferior Alveolar and Lingual Nerve Pathology by 3D Double-Echo Steady-State MRI: Two Case Reports with Literature Review
Injury to the peripheral branches of the trigeminal nerve, particularly the lingual nerve (LN) and the inferior alveolar nerve (IAN), is a rare but serious complication that can occur during oral and maxillofacial surgery. Mandibular third molar surgery, one of the most common surgical procedures in dentistry, is most often associated with such a nerve injury. Proper preoperative radiologic assessment is hence key to avoiding neurosensory dysfunction. In addition to the well-established conventional X-ray-based imaging modalities, such as panoramic radiography and cone-beam computed tomography, radiation-free magnetic resonance imaging (MRI) with the recently introduced black-bone MRI sequences offers the possibility to simultaneously visualize osseous structures and neural tissue in the oral cavity with high spatial resolution and excellent soft-tissue contrast. Fortunately, most LN and IAN injuries recover spontaneously within six months. However, permanent damage may cause significant loss of quality of life for affected patients. Therefore, therapy should be initiated early in indicated cases, despite the inconsistency in the literature regarding the therapeutic time window. In this report, we present the visualization of two cases of nerve pathology using 3D double-echo steady-state MRI and evaluate evidence-based decision-making for iatrogenic nerve injury regarding a wait-and-see strategy, conservative drug treatment, or surgical re-intervention
Atypical attention and saccade vigor in post-traumatic stress disorder
Effective attention control is essential for behavioral adaptation to different environmental contexts. In Post-traumatic Stress Disorder (PTSD) altered attention has been described in trauma-related and other emotional contexts. Nevertheless, atypical attention is also seen with neutral stimuli. The mechanisms of attention alterations in PTSD associated with neutral stimuli are poorly understood. The present study investigates alerting and orienting responses in PTSD participants using emotionally neutral stimuli in a saccade eye movement task incorporating both spatially predictable and temporally unpredictable conditions. We studied 23 PTSD patients and 27 Non-PTSD controls, using repeated-measures mixed modeling to estimate group and task condition differences in behavioral and psychophysiological measures. We explored the relationships among saccade characteristics, pupil size, and PTSD symptoms, including CAPS hypervigilance scores. PTSD, compared to Non-PTSD, participants showed differences in their saccade 'main sequence', reflected by higher peak velocities adjusted for amplitude. PTSD participants had smaller primary position errors in the unpredictable saccade condition. They also exhibited greater hyperarousal, reflected by larger pupil size during fixation that was greater in the unpredictable condition. Our results suggest that a heightened state of arousal and hypervigilance in PTSD leads to a state of atypical attention bias, even in emotionally neutral contexts. These differences may reflect higher saccade vigor. The observed differences suggest atypical attention in PTSD, which goes beyond possible distraction associated with emotional or threat-related stimuli
Dental Magnetic Resonance Imaging in Implant Surgery - Status Quo and Outlook
Numerous technical advances in magnetic resonance imaging have opened up promising new approaches in dentomaxillofacial radiology in recent years. With its ability to simultaneously visualize soft and hard tissues, MRI has the potential to become an innovative method for accurate diagnosis and planning of dental implants. Dental MRI is already a valuable and useful complement to conventional X-ray imaging techniques and could further minimize the risks of surgery by optimizing existing treatment protocols. Considering current efforts in dentistry to reduce radiation exposure and take a further step toward personalized oral diagnostics that consider patient-specific factors, this article reviews the capabilities of dentomaxillofacial MR imaging in implant surgery. It highlights the various applications of MRI in dental implant surgery and evaluates both the benefits and the clinical challenges. Overall, considering the specific indications and limitations of MR sequences, dental MRI represents a further significant advance in individualized treatment planning in dentistry. It allows consideration of parameters not visualized by conventional imaging techniques and is particularly useful for evaluating surgically relevant parameters, especially those related to soft tissue
Magnetic resonance imaging in dental implant surgery: a systematic review
Purpose
To comprehensively assess the existing literature regarding the rapidly evolving in vivo application of magnetic resonance imaging (MRI) for potential applications, benefits, and challenges in dental implant surgery.
Methods
Electronic and manual searches were conducted in PubMed MEDLINE, EMBASE, Biosis, and Cochrane databases by two reviewers following the PICOS search strategy. This involved using medical subject headings (MeSH) terms, keywords, and their combinations.
Results
Sixteen studies were included in this systematic review. Of the 16, nine studies focused on preoperative planning and follow-up phases, four evaluated image-guided implant surgery, while three examined artifact reduction techniques. The current literature highlights several MRI protocols that have recently investigated and evaluated the in vivo feasibility and accuracy, focusing on its potential to provide surgically relevant quantitative and qualitative parameters in the assessment of osseointegration, peri-implant soft tissues, surrounding anatomical structures, reduction of artifacts caused by dental implants, and geometric accuracy relevant to implant placement. Black Bone and MSVAT-SPACE MRI, acquired within a short time, demonstrate improved hard and soft tissue resolution and offer high sensitivity in detecting pathological changes, making them a valuable alternative in targeted cases where CBCT is insufficient. Given the data heterogeneity, a meta-analysis was not possible.
Conclusions
The results of this systematic review highlight the potential of dental MRI, within its indications and limitations, to provide perioperative surgically relevant parameters for accurate placement of dental implants
Ultra-High-Resolution Time-of-Flight MR-Angiography for the Noninvasive Assessment of Intracranial Aneurysms, Alternative to Preinterventional DSA?
Purpose
The 3D time-of-flight (TOF) magnetic resonance angiography (MRA) at 3T shows high sensitivity for intracranial aneurysms but is inferior to three-dimensional digital subtraction angiography (3D-DSA) regarding aneurysm characteristics. We applied an ultra-high-resolution (UHR) TOF-MRA using compressed sensing reconstruction to investigate the diagnostic performance in preinterventional evaluation of intracranial aneurysms compared to conventional TOF-MRA and 3D-DSA.
Methods
In this study 17 patients with unruptured intracranial aneurysms were included. Aneurysm dimensions, configuration, image quality and sizing of endovascular devices were compared between conventional TOF-MRA at 3T and UHR-TOF with 3D-DSA as gold standard. Quantitatively, contrast-to-noise ratios (CNR) were compared between TOF-MRAs.
Results
On 3D-DSA, 25 aneurysms in 17 patients were detected. On conventional TOF, 23 aneurysms were detected (sensitivity: 92.6%). On UHR-TOF, 25 aneurysms were detected (sensitivity: 100%). Image quality was not significantly different between TOF and UHR-TOF (p = 0.17). Aneurysm dimension measurements were significantly different between conventional TOF (3.89 mm) and 3D-DSA (4.2 mm, p = 0.08) but not between UHR-TOF (4.12 mm) and 3D-DSA (p = 0.19). Irregularities and small vessels at the aneurysm neck were more frequently correctly depicted on UHR-TOF compared to conventional TOF. Comparison of the planned framing coil diameter and flow-diverter (FD) diameter revealed neither a statistically significant difference between TOF and 3D-DSA (coil p = 0.19, FD p = 0.45) nor between UHR-TOF and 3D-DSA (coil: p = 0.53, FD 0.33). The CNR was significantly higher in conventional TOF (p = 0.009).
Conclusion
In this pilot study, ultra-high-resolution TOF-MRA visualized all aneurysms and accurately depicted aneurysm irregularities and vessels at the base of the aneurysm comparably to DSA, outperforming conventional TOF. UHR-TOF with compressed sensing reconstruction seems to represent a non-invasive alternative to pre-interventional DSA for intracranial aneurysms
Validation of echo planar imaging based diffusion-weighted magnetic resonance imaging on a 0.35 T MR-Linac
BACKGROUND AND PURPOSE: The feasibility of acquiring diffusion-weighted imaging (DWI) images on an MR-Linac for quantitative response assessment during radiotherapy was explored. DWI data obtained with a Spin Echo Echo Planar Imaging sequence adapted for a 0.35 T MR-Linac were examined and compared with DWI data from a conventional 3 T scanner.
MATERIALS AND METHODS: Apparent diffusion coefficient (ADC) measurements and a distortion correction technique were investigated using DWI-calibrated phantoms and in the brains of seven volunteers. All DWI utilized two phase-encoding directions for distortion correction and off-resonance field estimation. ADC maps in the brain were analyzed for automatically segmented normal tissues.
RESULTS: Phantom ADC measurements on the MR-Linac were within a 3 % margin of those recorded by the 3 T scanner. The maximum distortion observed in the phantom was 2.0 mm prior to correction and 1.1 mm post-correction on the MR-Linac, compared to 6.0 mm before correction and 3.6 mm after correction at 3 T. In vivo, the average ADC values for gray and white matter exhibited variations of 14 % and 4 %, respectively, for different selections of b-values on the MR-Linac. Distortions in brain images before correction, estimated through the off-resonance field, reached 2.7 mm on the MR-Linac and 12 mm at 3 T.
CONCLUSION: Accurate ADC measurements are achievable on a 0.35 T MR-Linac, both in phantom and in vivo. The selection of b-values significantly influences ADC values in vivo. DWI on the MR-Linac demonstrated lower distortion levels, with a maximum distortion reduced to 1.1 mm after correction
Heterogeneous motor BOLD-fMRI responses in brain areas exhibiting negative BOLD cerebrovascular reactivity indicate that steal phenomenon does not always result from exhausted cerebrovascular reserve capacity
Introduction: Brain areas exhibiting negative blood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) responses to carbon dioxide (CO2) are thought to suffer from a completely exhausted autoregulatory cerebrovascular reserve capacity and exhibit vascular steal phenomenon. If this assumption is correct, the presence of vascular steal phenomenon should subsequently result in an equal negative fMRI signal response during a motor-task based BOLD-fMRI study (increase in metabolism without an increase in cerebral blood flow due to exhausted reserve capacity) in otherwise functional brain tissue. To investigate this premise, the aim of this study was to further investigate motor-task based BOLD-fMRI signal responses in brain areas exhibiting negative BOLD-CVR.
Material and methods: Seventy-one datasets of patients with cerebrovascular steno-occlusive disease without motor defects, who underwent a CO2-calibrated motor task-based BOLD-fMRI study with a fingertapping paradigm and a subsequent BOLD-CVR study with a precisely controlled CO2-challenge during the same MRI examination, were included. We compared BOLD-fMRI signal responses in the bilateral pre- and postcentral gyri - i.e. Region of Interest (ROI) with the corresponding BOLD-CVR in this ROI. The ROI was determined using a second level group analysis of the BOLD-fMRI task study of 42 healthy individuals undergoing the same study protocol.
Results: An overall decrease in BOLD-CVR was associated with a decrease in BOLD-fMRI signal response within the ROI. For patients exhibiting negative BOLD-CVR, we found both positive and negative motor-task based BOLD-fMRI signal responses.
Conclusion: We show that the presence of negative BOLD-CVR responses to CO2 is associated with heterogeneous motor task-based BOLD-fMRI signal responses, where some patients show -more presumed- negative BOLD-fMRI signal responses, while other patient showed positive BOLD-fMRI signal responses. This finding may indicate that the autoregulatory vasodilatory reserve capacity does not always need to be completely exhausted for vascular steal phenomenon to occur
- …
