553 research outputs found
Left-Invariant Diffusion on the Motion Group in terms of the Irreducible Representations of SO(3)
In this work we study the formulation of convection/diffusion equations on
the 3D motion group SE(3) in terms of the irreducible representations of SO(3).
Therefore, the left-invariant vector-fields on SE(3) are expressed as linear
operators, that are differential forms in the translation coordinate and
algebraic in the rotation. In the context of 3D image processing this approach
avoids the explicit discretization of SO(3) or , respectively. This is
particular important for SO(3), where a direct discretization is infeasible due
to the enormous memory consumption. We show two applications of the framework:
one in the context of diffusion-weighted magnetic resonance imaging and one in
the context of object detection
Connectivity of the Superficial Muscles of the Human Perineum: A Diffusion Tensor Imaging-Based Global Tractography Study.
Despite the importance of pelvic floor muscles, significant controversy still exists about the true structural details of these muscles. We provide an objective analysis of the architecture and orientation of the superficial muscles of the perineum using a novel approach. Magnetic Resonance Diffusion Tensor Images (MR-DTI) were acquired in 10 healthy asymptomatic nulliparous women, and 4 healthy males. Global tractography was then used to generate the architecture of the muscles. Micro-CT imaging of a male cadaver was performed for validation of the fiber tracking results. Results show that muscles fibers of the external anal sphincter, from the right and left side, cross midline in the region of the perineal body to continue as transverse perinea and bulbospongiosus muscles of the opposite side. The morphology of the external anal sphincter resembles that of the number '8' or a "purse string". The crossing of muscle fascicles in the perineal body was supported by micro-CT imaging in the male subject. The superficial muscles of the perineum, and external anal sphincter are frequently damaged during child birth related injuries to the pelvic floor; we propose the use of MR-DTI based global tractography as a non-invasive imaging technique to assess damage to these muscles
Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom.
International audienceAs it provides the only method for mapping white matter fibers in vivo, diffusion MRI tractography is gaining importance in clinical and neuroscience research. However, despite the increasing availability of different diffusion models and tractography algorithms, it remains unclear how to select the optimal fiber reconstruction method, given certain imaging parameters. Consequently, it is of utmost importance to have a quantitative comparison of these models and algorithms and a deeper understanding of the corresponding strengths and weaknesses. In this work, we use a common dataset with known ground truth and a reproducible methodology to quantitatively evaluate the performance of various diffusion models and tractography algorithms. To examine a wide range of methods, the dataset, but not the ground truth, was released to the public for evaluation in a contest, the "Fiber Cup". 10 fiber reconstruction methods were evaluated. The results provide evidence that: 1. For high SNR datasets, diffusion models such as (fiber) orientation distribution functions correctly model the underlying fiber distribution and can be used in conjunction with streamline tractography, and 2. For medium or low SNR datasets, a prior on the spatial smoothness of either the diffusion model or the fibers is recommended for correct modelling of the fiber distribution and proper tractography results. The phantom dataset, the ground truth fibers, the evaluation methodology and the results obtained so far will remain publicly available on: http://www.lnao.fr/spip.php?rubrique79 to serve as a comparison basis for existing or new tractography methods. New results can be submitted to [email protected] and updates will be published on the webpage
PatchMorph: A Stochastic Deep Learning Approach for Unsupervised 3D Brain Image Registration with Small Patches
We introduce "PatchMorph," an new stochastic deep learning algorithm tailored
for unsupervised 3D brain image registration. Unlike other methods, our method
uses compact patches of a constant small size to derive solutions that can
combine global transformations with local deformations. This approach minimizes
the memory footprint of the GPU during training, but also enables us to operate
on numerous amounts of randomly overlapping small patches during inference to
mitigate image and patch boundary problems. PatchMorph adeptly handles world
coordinate transformations between two input images, accommodating variances in
attributes such as spacing, array sizes, and orientations. The spatial
resolution of patches transitions from coarse to fine, addressing both global
and local attributes essential for aligning the images. Each patch offers a
unique perspective, together converging towards a comprehensive solution.
Experiments on human T1 MRI brain images and marmoset brain images from serial
2-photon tomography affirm PatchMorph's superior performance.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl
Whole-brain in-vivo measurements of the Axonal G-Ratio in a group of 37 healthy volunteers
The g-ratio, quantifying the ratio between the inner and outer diameters of a fiber, is an important microstructural characteristic of fiber pathways and is functionally related to conduction velocity. We introduce a novel method for estimating the MR g-ratio non-invasively across the whole brain using high-fidelity magnetization transfer (MT) imaging and single-shell diffusion MRI. These methods enabled us to map the MR g-ratio in vivo across the brain's prominent fiber pathways in a group of 37 healthy volunteers and to estimate the inter-subject variability. Effective correction of susceptibility-related distortion artifacts was essential before combining the MT and diffusion data, in order to reduce partial volume and edge artifacts. The MR g-ratio is in good qualitative agreement with histological findings despite the different resolution and spatial coverage of MRI and histology. The MR g-ratio holds promise as an important non-invasive biomarker due to its microstructural and functional relevance in neurodegeneration
Association between myosteatosis and impaired glucose metabolism: A deep learning whole‐body magnetic resonance imaging population phenotyping approach
BackgroundThere is increasing evidence that myosteatosis, which is currently not assessed in clinical routine, plays an important role in risk estimation in individuals with impaired glucose metabolism, as it is associated with the progression of insulin resistance. With advances in artificial intelligence, automated and accurate algorithms have become feasible to fill this gap.MethodsIn this retrospective study, we developed and tested a fully automated deep learning model using data from two prospective cohort studies (German National Cohort [NAKO] and Cooperative Health Research in the Region of Augsburg [KORA]) to quantify myosteatosis on whole-body T1-weighted Dixon magnetic resonance imaging as (1) intramuscular adipose tissue (IMAT; the current standard) and (2) quantitative skeletal muscle (SM) fat fraction (SMFF). Subsequently, we investigated the two measures for their discrimination of and association with impaired glucose metabolism beyond baseline demographics (age, sex and body mass index [BMI]) and cardiometabolic risk factors (lipid panel, systolic blood pressure, smoking status and alcohol consumption) in asymptomatic individuals from the KORA study. Impaired glucose metabolism was defined as impaired fasting glucose or impaired glucose tolerance (140–200 mg/dL) or prevalent diabetes mellitus.ResultsModel performance was high, with Dice coefficients of ≥0.81 for IMAT and ≥0.91 for SM in the internal (NAKO) and external (KORA) testing sets. In the target population (380 KORA participants: mean age of 53.6 ± 9.2 years, BMI of 28.2 ± 4.9 kg/m2, 57.4% male), individuals with impaired glucose metabolism (n = 146; 38.4%) were older and more likely men and showed a higher cardiometabolic risk profile, higher IMAT (4.5 ± 2.2% vs. 3.9 ± 1.7%) and higher SMFF (22.0 ± 4.7% vs. 18.9 ± 3.9%) compared to normoglycaemic controls (all P ≤ 0.005). SMFF showed better discrimination for impaired glucose metabolism than IMAT (area under the receiver operating characteristic curve [AUC] 0.693 vs. 0.582, 95% confidence interval [CI] [0.06–0.16]; P ConclusionsQuantitative SMFF, but not IMAT, is an independent predictor of impaired glucose metabolism, and discrimination is not significantly different from BMI, making it a promising alternative for the currently established approach. Automated methods such as the proposed model may provide a feasible option for opportunistic screening of myosteatosis and, thus, a low-cost personalized risk assessment solution
- …
