95 research outputs found
Effects of CO2 flushing on crystal textures and compositions: experimental evidence from recent K trachybasalts erupted at Mt. Etna
Changes in magmatic assemblages and crystal stability as a response of CO2
flushing in basaltic systems have been never directly addressed experimentally,
making the role of CO2 in magma dynamics still controversial and object of
scientific debate. We conducted a series of experiments to understand the
response of magmas from Etna volcano to CO2 flushing. We performed a first
experiment at 300 MPa to synthesize a starting material composed of crystals of
some hundreds of m and melt pools. This material is representative of an
initial magmatic assemblage composed of plagioclase, clinopyroxene and a water
undersaturated melt. In a second step, the initial assemblage was equilibrated
at 300 and 100 MPa with fluids having different XCO2fl . Our experiments
demonstrate that flushing basaltic systems with fluids may drastically affect
crystal textures and phase equilibria depending on the amount of H2O and CO2 in
the fluid phase. Since texture and crystal proportions are among the most
important parameters governing the rheology of magmas, fluid flushing will also
influence magma ascent to the Earths surface. The experimental results open new
perspectives to decipher the textural and compositional record of minerals
observed in volcanic rocks from Mt. Etna, and at the same time offer the basis
for interpreting the information preserved in minerals from other basaltic
volcanoes erupting magmas enriched in CO2
The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland)
Using satellite-based remote sensing to investigate volcanic eruptions is a common approach for preliminary research, chiefly because a great amount of freely available data can be effectively accessed. Here, Landsat 4-5TM, 7ETM+, and 8OLI night-time satellite images are used to estimate lava flow temperatures and radiation heat fluxes from selected volcanic eruptions worldwide. After retrieving the spectral radiance, the pixel values were transformed into temperatures using the calculated calibration constants. Results showed that the TIR and SWIR bands were saturated and unable to detect temperatures over the active lava flows. However, temperatures were effectively detected over the active lava flows in the range ~500–1060 ◦C applying the NIR-, red-, green- or blue-band. Application of the panchromatic band with 15 m resolution also revealed details of lava flow morphology. The calculated radiant heat flux for the lava flows accords with increasing cooling either with slope or with distance from the vent
The italian quaternary volcanism
The peninsular and insular Italy are punctuated by Quaternary volcanoes and their rocks constitute an important aliquot of the Italian Quaternary sedimentary successions. Also away from volcanoes themselves, volcanic ash layers are a common and frequent feature of the Quaternary records, which provide us with potential relevant stratigraphic and chronological markers at service of a wide array of the Quaternary science issues. In this paper, a broad representation of the Italian volcano logical community has joined to provide an updated comprehensive state of art of the Italian Quaternary volcanism. The eruptive history, style and dynamics and, in some cases, the hazard assessment of about thirty Quaternary volcanoes, from the north ernmost Mt. Amiata, in Tuscany, to the southernmost Pantelleria and Linosa, in Sicily Channel, are here reviewed in the light of the substantial improving of the methodological approaches and the overall knowledge achieved in the last decades in the vol canological field study. We hope that the present review can represent a useful and agile document summarising the knowledege on the Italian volcanism at the service of the Quaternary community operating in central Mediterranean area
Detection of ice core particles via deep neural networks
Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented
Doped bentonitic grouts for implementing performances of low-enthalpy geothermal systems
Abstract Mechanical (flexural and uniaxial compressive strengths) and physical (thermal conductivity) properties of two new bentonitic grouts doped with 5 and 10% of graphite powder are discussed in this work and evaluated for their potential use in low-enthalpy geothermal applications. The same tests have been also conducted on a pure starting material (bentonitic grout) already present on the market and used to seal geothermal probes into boreholes. Experimental data show that the addition of 5 and 10% of graphite powder positively alters the mechanical properties of the doped bentonitic grouts, i.e., both flexural and uniaxial compressive strengths increased with respect to those of the pure material. Thermal conductivity also improved up to 60% in the doped bentonitic grouts. A simple analysis of the cost/benefit ratio suggests, however, that the bentonitic grouts doped with 5% of graphite powder is more suitable and competitive for a launch on the market and utilization as a sealing material in boreholes aimed at low-enthalpy geothermal installations. Implementation of thermal properties of the grout material implicates a reduction of the total borehole length of 15–20%
Mantle ingredients for making the fingerprint of Etna alkaline magmas: implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily
Mantle ingredients responsible for the signature of Etnean Na- and K-alkaline magmas and their relationships with short-term geochemical changes of the erupted volcanic rocks have been constrained through a partial melting model that considers major, trace elements and water contents in the produced liquids. Characteristics of the Etnean source for alkaline magmas have been supposed similar to those of the mantle accessible at a regional scale, namely below the Hyblean Plateau. The assumption that the Etnean mantle resembles the one beneath the Hyblean Plateau is justified by the large geochemical affinities of the Etnean hawaiites/K-trachybasalts and the Hyblean hawaiites/alkali basalts for what concerns both trace elements and isotope systematics. We have modeled partial melting of a composite source constituted by two rock types, inferred by lithological and geochemical features of the Hyblean xenoliths: 1) a spinel lherzolite bearing metasomatic, hydrous phases and 2) a garnet pyroxenite in form of veins intruded into the spinel lherzolite. The partial melting modeling has been applied to each rock type and the resulting primary liquids have been then mixed in various proportions. These compositions have been compared with some Etnean alkaline magmas of the post ∼60 ka activity, which were firstly re-equilibrated to mantle conditions through mass balance calculations. Our results put into evidence that concentrations of major and trace elements along with the water obtained from the modeling are remarkably comparable with those of Etnean melts re-equilibrated at primary conditions.
Different proportions of the spinel lherzolite with variable modal contents of metasomatic phases and of the garnet pyroxenite can therefore account for the signature of a large spectrum of Etnean alkaline magmas and for their geochemical variability through time, emphasizing the crucial role played by compositional small-scale heterogeneity of the source. These heterogeneities are able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.Published10-232V. Struttura e sistema di alimentazione dei vulcaniJCR Journa
Transient uprise of gas and gas-rich magma batches fed the pulsating behavior of the 2006 eruptive episodes at Mt. Etna volcano
Unusual magma storage conditions at Mt. Etna (Southern Italy) as evidenced by plagioclase megacryst-bearing lavas: implications for the plumbing system geometry and summit caldera collapse
- …
