481 research outputs found

    Physiological responses of C4 grasses to prolonged heat stress

    Get PDF
    C4 grasses are best adapted to the transition, warm-arid, and warm-humid climatic zones and have the ability to acquire thermotolerance by exposure to acute heat stress. Exposure to sub-lethal temperatures results in changes in physiological, biochemical, metabolic, and molecular processes. The response of two warm-season grasses to prolonged heat stress was investigated. Plants of hybrid bermudagrass (Cynodon dactylon × C. transvaalensis ‘Tifway’) and Japanese lawn grass (Zoysia japonica Steud. ‘Meyer’) were exposed for 168 h to supraoptimal temperature conditions (47°C) in controlled-environment chamber. Compared with zoysiagrass, bermudagrass showed greater damage. Metabolite profi les were affected by prolonged heat exposure, with signifi cant differences between these species. Consistent differences were found in total soluble sugars accumulation over the study period and severity of plant organ senescence. Bermudagrass roots were more affected, as compared to leaves. Leaf proteins expression determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed an early degradation in zoysiagrass, as thermal exposure proceeded. A signifi - cant net decline in protein content was observed after 48 h of exposure, while in bermudagrass an analogous decline was not detected until 96 h of treatment. Although heat stress is not considered a detrimental factor to C4 grass species, the two species showed signifi cant differences in their physiological response to continuous high temperatures

    Winter Colour Retention and Spring Green-Up of Zoysiagrass Genotypes in Southern Europe

    Get PDF
    Zoysiagrass (Zoysia spp. Wild.) is a sustainable choice for the Mediterranean area, being identified as grass species adapted to low-input environments (limited water requirements, no fertilizer or pesticides after establishment). A distinct drawback in the transition zone is winter dormancy, a temporary suspension of visible growth, followed by discoloration and loss of functionality. In order to investigate the genotype/species effect in relation with agro-meteorological conditions, 10 cultivars/experimental lines were screened for their ability to extend the winter colour retention. A two years field study was conducted on mature swards and evaluated during the onset of dormancy and spring green-up using digital image analysis. For both parameters, in both years, the Authors observed a wide range of cultivar responses. Zoysia japonica genotypes in our study provided significantly shorter dormancy period than fine-leaved genotypes. In some instances, there were as much as 35 and 20 d difference between entries in respect to the winter colour retention and spring onset, respectively. The identification of genotypes with shorter dormancy than 'Meyer' (industry standard) may reduce use of cultural practices, as late-season nitrogen or iron application, normally used to extend the winter colour retention of zoysiagrass in late fall or early spring, showing different levels of success

    Carbohydrate Metabolism During Wintering Period in Four Zoysiagrass Genotypes

    Get PDF
    A key barrier to widespread use of warm-season grasses in the transition zone between the temperate and subtropical climates is represented by the winter dormancy, a temporary suspension of visible growth of any plant structure including the meristem. In this environment, species with different photosynthetic carbon cycle coexist, leading to asynchrony in growth among warm- and cool-season grasses. The objectives of the present study were (i) to assess the carbohydrate content in four representative zoysiagrasses Zoysia japonica 'El Toro', 'Meyer', Z. pacifica, and Z. matrella 'Zeon' during three successive phases of vegetation phenology, senescence, dormancy, and green-up, and (ii) to characterize the metabolic responses to phenological variations under natural acclimation. Japanese lawn grass genotypes 'El Toro' and 'Meyer' showed longer dormancy periods than fine-leaved Z. pacifica and 'Zeon'. In Japanese lawn grass genotypes, the progressive decline of photosynthetic pigments was similar to that observed in the color retention. Over the experimental period, a significantly greater amount of starch reserves was observed in sprigs (horizontal stems) in the Japanese lawn grasses than in the fine-leaved zoysiagrasses. In general, total soluble sugars (TSS) in leaves and sprigs did not show evidence of sugar starvation during the senescence phase. TSS increased significantly during cold acclimation, resulting in a higher metabolic activity at the onset of green-up to support spring regreening in all zoysiagrasses except 'Meyer' leaves

    Warm-season turfgrass species generate sports surfaces with different playability

    Get PDF
    Synthetic sports surfaces are increasingly subject to standardization of athlete-surface and ball-surface interactions (playability parameters). Such standardizations have led to an increase in the level of the engineering and predictability of these surfaces, and as such may be beneficial also for natural turf. In warm and temperate climates, many natural turf sports surfaces are established with warm-season (C4) turfgrass species due to their suitability to the environment in such areas. This study was aimed at evaluating the Féderation Internationale de Football Association (FIFA)-standard playing characteristics of different sports turf surfaces obtained from three commonly used C4 turfgrass species: 1) ‘Tifway 419’ hybrid bermudagrass (Cynodon dactylon var. dactylon × C. transvaalensis), 2) ‘Zeon’ manilagrass (Zoysia matrella), and 3) ‘Salam’ seashore paspalum (Paspalum vaginatum) for factors concerning leaf tissue (silica, lignin, water content) and canopy structure (shoot density, leaf architecture, stolon density, etc.). Results showed that surfaces of different C4 turfgrass species generate different playability parameters, with seashore paspalum being a harder faster surface, manilagrass being a softer slower surface, and hybrid bermudagrass showing intermediate characteristics. These playing quality results were associated with certain specific canopy biometrical/morphological parameters such as shoot density, horizontal stem density (HSD), leaf section, and, to a lesser extent, to certain plant tissue compounds (lignin, silica)

    Performance of Different Cool-Season Species and Cultivars Overseeded on Bermudagrass and Managed with Autonomous Mower

    Get PDF
    With global warming, the cultivation area of bermudagrass is moving northwards in the Mediterranean area despite its winter dormancy and loss of green color. The most common solution is overseeding with perennial ryegrass, which can be complicated to remove in spring. DLF breeders have released a new cultivar of annual ryegrass that is stress tolerant and easy to transition in spring. A trial was carried out on a sod farm in Pisa, Italy. Twenty-nine varieties of cool-season grasses, encompassing both forage and turf species, were overseeded on a hybrid bermudagrass variety ‘Tifway’ (Cynodon dactylon x transvaalensis). The aim of this trial was to compare the overseeding potential of various cool-season turfgrass species and cultivars and to identify which ones perform best in terms of cleanness of cut when overseeded on hybrid bermudagrass in autumn and maintained at a mowing height of 25 mm. Moreover, the following parameters were also assessed: actual turf height (cm); cumulated height (cm); turf visual color and quality (1–9 scale); and visual ground cover (%). Plots were managed with an autonomous mower, which adopted a daily mowing frequency and was set to work with systematic trajectories. The results showed differences between cultivars, and the annual ryegrass showed the best spring transition (scoring a mean value of 96% green cover in July 2023) compared to the other entries. The best result of CoC was measured for rough-stalked meadow grass ‘Sabrena 1’ and tall fescue ‘Turfway’ with 0.9 mm

    Transforming Risk Perception and Fostering Cooperatively the Agri- PhotoVoltaics Technology With Farmers in Five Countries: A Sociological Perspective From the REGACE (Crop Responsive Greenhouse Agriphotovoltaics System With CO2 Enrichment for Higher Yields) Project

    Get PDF
    The interaction between agricultural practitioners and innovative technologies has emerged as a critical area of inquiry in contemporary academic discourse. Disruptive advancements in agricultural technology—particularly in the domains of drone applications, artificial intelligence (AI), and agrivoltaics—present significant potential to address urgent environmental and energy-related challenges. However, the successful adoption and integration of these technologies are contingent upon robust processes of societal acceptance and comprehension, especially among farmers, who constitute the primary users and key stakeholders. The theory of disruptive innovation, initially conceptualized by Bower and Christensen in 1995, underscores the transformative capacity of novel technologies across various sectors. Nevertheless, the efficacy of such innovations is predicated on their seamless integration and acceptance by diverse stakeholder groups, including primary actors such as farmers and industry, as well as secondary entities with ancillary interests. For technological innovations to achieve their intended outcomes, they must be accompanied by authentic participatory processes that involve end-users from the initial stages. Within this framework, next-generation agriphotovoltaics greenhouses—which integrate photovoltaic systems with agricultural practices and enhance soil CO₂ enrichment—represent a pivotal solution for reconciling agricultural productivity with renewable energy generation. The WP6 of Regace Project. In this perspective, the WP6 of the REGACE project aimed, through the use of mixed qualitative, quantitative, and participatory methodologies, to investigate farming communities’ perceptions of agriphotovoltaics innovations. These sociological processes are intended to accompany the phases and models of agriphotovoltaics innovation from a perspective of social sustainability, with an active involvement of the community of innovation recipients

    A New Method for Hybrid Bermuda Grass (Cynodon dactylon × C. transvaalensis Burtt.-Davy) Vegetative Propagation

    Get PDF
    Hybrid Bermuda grasses (Cynodon dactylon × C. transvaalensis Burtt.-Davy) represent one of the greatest contributions to the growing quality of turfgrass in the warm season and transition zone areas of the world. Hybrid Bermuda grass production relies on vegetative propagation from sod or sprigs. In the past, efforts have focused on improving the technique of stolonizing (or sprigging) for establishment in new areas. Such propagation requires bulk harvesting and planting of all rhizomes and stolons. We have developed a novel method of propagation and establishment from a single node harvested from greenhouse grown stolons. Despite a stolon fraction bearing a single node being suitable for effectively propagating a warm-season turfgrass, the technique has been held as economically impractical until now. Our method has been developed to obtain the multiplication of plant material in soilless conditions by harvesting single-node sprigs, propagation of plants from the single nodes, and transplant of single plants in the field. The investigation aimed to identify values for method set-up. Indeed, node and internode size variability with differential between maximum diameters is crucial for discrimination. For Patriot Bermuda grass stolons, nodes exhibited a maximum diameter of 2.43 ± 0.46 mm, while internodes had a maximum diameter of 1.54 ± 0.16 mm. Based on these findings, a 2 mm sieve was selected, achieving an optimal ratio between the node fraction and internode residues. The sieve yielded 87% of node fractions and only 1% of internodes from the initial mix, demonstrating its efficacy. Further results for the transplanting phase indicated that a double release resulted in an average success rate of 98.8%, with only 6.9% blank cells when using a single release. The average was 149 plants per tray over 160 cells, representing a 93.1% success rate. These results underscore the efficiency and acceptability of the overall propagation process in alignment with market references

    Innovative Techniques for Managing Dollar Spot in Warm- and Cool-Season Turfgrasses: The Case of UV-B and UV-C Irradiations

    Get PDF
    The management of Dollar spot, the fungal disease of turfgrasses, is complicated and, today, tends to include new eco-friendly approaches. The aim of this study is to evaluate the effect of UV-B and UV-C lamps against the infection of Clarireedia species in warm- and cool-season turfgrasses. In vitro tests were performed to evaluate the growth of C. jacksonii mycelium on Potato Dextrose Agar, irradiated with UV-B and UV-C at heights of 5 and 15 cm, 5 s per day for three consecutive days. The same treatments, prolonged for seven days, were applied on naturally infected potted Agrostis stolonifera and Cynodon dactylon × C. transvaalensis, for in vivo tests. Disease severity, antioxidant capacity, and pigment content were assessed at the end of the experiment. Only UV-C reduced the growth of C. jacksonii after 48 h at 5 cm (−36%) and 72 h at both distances (−15 and −27%). Agrostis stolonifera showed symptoms, reduced by UV-C at 5 cm, and fungal structures, except in UV-C exposed samples. Total antioxidant capacity increased after UV-B exposure at 5 cm (+10%). No variations in terms of photosynthetic pigments were observed. These results confirm the potential of UV-C lamps for the containment of Dollar spot

    Seedling Establishment of Tall Fescue Exposed to Long-Term Starvation Stress

    Get PDF
    In germinating seeds under unfavorable environmental conditions, the mobilization of stores in the cotyledons is delayed, which may result in a different modulation of carbohydrates balance and a decrease in seedling vigor. Tall fescue (Festuca arundinacea Schreb.) caryopses grown at 4˚C in the dark for an extended period in complete absence of nutrients, showed an unexpected ability to survive. Seedlings grown at 4˚C for 210 days were morphologically identical to seedlings grown at 23˚C for 21 days. After 400 days, seedlings grown at 4˚C were able to differentiate plastids to chloroplast in just few days once transferred to the light and 23˚C. Tall fescue exposed to prolonged period at 4˚C showed marked anatomical changes: cell wall thickening, undifferentiated plastids, more root hairs and less xylem lignification. Physiological modifications were also observed, in particular related to sugar content, GA and ABA levels and amylolytic enzymes pattern. The phytohormones profiles exhibited at 4 and 23˚C were comparable when normalized to the respective physiological states. Both the onset and the completion of germination were linked to GA and ABA levels, as well as to the ratio between these two hormones. All plants showed a sharp decline in carbohydrate content, with a consequent onset of gradual sugar starvation. This explained the slowed then full arrest in growth under both treatment regimes. The analysis of amylolytic activity showed that Ca2+ played a central role in the stabilization of several isoforms. Overall, convergence of starvation and hormone signals meet in crosstalk to regulate germination, growth and development in tall fescue
    corecore