1,763 research outputs found

    Assessment of overheating risk in gynaecology scanning rooms during near-heatwave conditions: a case study of the Royal Berkshire Hospital in the UK

    Get PDF
    Hospital buildings in the UK are at particular risk to rising summer temperatures associated with climate change. Balancing the thermal needs of patients, staff, and visitors is a challenging, complex endeavour. A case study of the ultrasound area of the Royal Berkshire Hospital’s Maternity and Gynaecology building is presented, where temperatures were measured for 35 days in waiting areas, staff offices, and ultrasound scanning rooms, aiming to assess the overheating risk posed to occupants. Local external temperature measurements were used for comparison whereby determining the indoor-outdoor environmental connection. Results show that most rooms had already breached standard overheating thresholds within the study period. Anthropogenic and waste heat from equipment has a noticeable effect on indoor temperatures. Local air-conditioning helped reduce the peaks in temperature seen between 14:00 and 17:00 for similar scanning rooms but is in contradiction to the National Health Service’s sustainability plans. Several low-level solutions such as improved signage, access to water, and the allocation of vulnerable patients to morning clinics are suggested. Barriers to solutions are also discussed and the requirement of sufficient maintenance plans for cooling equipment is empathised. These solutions are likely to be applicable to other hospital buildings experiencing similar conditions

    Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent CFD

    Get PDF
    Building location and orientation with respect to incident wind angle are important parameters in determining wind-driven natural ventilation. Experimentally measured façade pressures and ventilation rates in the Silsoe cube under single-sided and cross-flow ventilation configurations are compared with CFD simulations conducted in OpenFoam and ANSYS Fluent using a typical linear workflow approach. Eight wind directions are studied with the cube in isolation and in a new staggered nine cube array format. Comparison is made using CIBSE's prescribed ventilation calculation method based on internal/external building pressure differences. Ventilation rate in the isolated cube with single-sided opening was comparatively lower than either of the cross-flow cases, and relationships between air change rate and wind angle were much weaker in the array cases. For the single opening case with the isolated cube, ventilation effectiveness decreases as the wind turns towards the opening due to increased short-circuiting of airflows. Turbulent structures close to windows improve mixing in the array case. Simulations suggest that vortex shedding from up-wind buildings provides pulsating ventilation in both window configurations, which may attenuate the negative effects of upwind flow obstruction

    Experimental analysis to quantify inactivation of microorganisms by Far-UVC irradiation in indoor environments

    Get PDF
    Funding: The research in this study was supported by NHS Scotland Assure grant reference 21–0001.Far-UVC irradiation at a 222 nm wavelength is a promising technology for inactivating microorganisms in indoor environments to mitigate transmission of infection. Here we report experimental measurements in a room-scale chamber to evaluate the performance of filtered Krypton-Chloride (KrCl) lamps in reducing the steady-state concentration of Staphylococcus aureus and Pseudomonas aeruginosa under different ventilation rates in indoor environments. The results showed a mean 95.5 % lowering of S. aureus load and 94.9 % of P. aeruginosa load at 3 air changes per hour (ACH) using one Far-UVC lamp and 97.8 % and >97.5 % using five lamps. At 1.5 ACH, the mean microbial reduction for S. aureus was >94.6 % and >99.5 % and at 9 ACH, it was 66.3 % and 91.9 % for 1 lamp and 5 lamps, respectively. Initial results at a shorter distance between the microbial source and collection sampling show a reduced but still substantial effect of the Far-UVC. The findings indicate that within these experimental conditions, Far-UVC can be effective at room-scale inactivation of a range of pathogens in a range of ventilation scenarios and also show promise at short-range inactivation. This research paves the way for future work to explore efficacy in real-world scenarios and to quantify usability and acceptability.Peer reviewe

    What is the relationship between indoor air quality parameters and airborne microorganisms in hospital environments? A systematic review and meta‐analysis

    Get PDF
    Airborne microorganisms in hospitals have been associated with several hospital‐acquired infections (HAIs), and various measures of indoor air quality (IAQ) parameters such as temperature, relative humidity, carbon dioxide (CO2), particle mass concentration, and particle size have been linked to pathogen survival or mitigation of pathogen spread. To investigate whether there are quantitative relationships between the concentration of airborne microorganisms and the IAQ in the hospital environment. Web of Science, Scopus and PubMed databases were searched for studies reporting airborne microbial levels and any IAQ parameter(s) in hospital environments, from database inception to October 2020. Pooled effect estimates were determined via random‐effects models. Seventeen of 654 studies were eligible for the meta‐analysis. The concentration of airborne microbial measured as aerobic colony count (ACC) was significantly correlated with temperature (r = 0.25 [95% CI = 0.06–0.42], p = 0.01), CO2 concentration (r = 0.53 [95% CI = 0.40–0.64], p ˂ 0.001), particle mass concentration (≤5 µg/m3; r = 0.40 [95% CI = 0.04–0.66], p = 0.03), and particle size (≤5 and ˃5 µm), (r = 0.51 [95% CI = 0.12–0.77], p = 0.01 and r = 0.55 [95% CI = 0.20–0.78], p = 0.003), respectively, while not being significantly correlated with relative humidity or particulate matter of size >5 µm. Conversely, airborne total fungi (TF) were not significantly correlated with temperature, relative humidity, or CO2 level. However, there was a significant weak correlation between ACC and TF (r = 0.31 [95% CI = 0.07–0.52], p = 0.013). Although significant correlations exist between ACC and IAQ parameters, the relationship is not definitive; the IAQ parameters may affect the microorganisms but are not responsible for the presence of airborne microorganisms. Environmental parameters could be related to the generating source, survival, dispersion, and deposition rate of microorganisms. Future studies should record IAQ parameters and factors such as healthcare worker presence and the activities carried out such as cleaning, sanitizing, and disinfection protocols. Foot traffic would influence both the generation of microorganisms and their deposition rate onto surfaces in the hospital environment. These data would inform models to improve the understanding of the likely concentration of airborne microorganisms and provide an alternative approach for real‐time monitoring of the healthcare environment

    Evaluating a transfer gradient assumption in a fomite-mediated microbial transmission model using an experimental and Bayesian approach

    Get PDF
    Current microbial exposure models assume that microbial exchange follows a concentration gradient during hand-to-surface contacts. Our objectives were to evaluate this assumption using transfer efficiency experiments and to evaluate a model's ability to explain concentration changes using approximate Bayesian computation (ABC) on these experimental data. Experiments were conducted with two phages (MS2,; Φ; X174) simultaneously to study bidirectional transfer. Concentrations on the fingertip and surface were quantified before and after fingertip-to-surface contacts. Prior distributions for surface and fingertip swabbing efficiencies and transfer efficiency were used to estimate concentrations on the fingertip and surface post contact. To inform posterior distributions, Euclidean distances were calculated for predicted detectable concentrations (log; 10; PFU cm; -2; ) on the fingertip and surface post contact in comparison with experimental values. To demonstrate the usefulness of posterior distributions in calibrated model applications, posterior transfer efficiencies were used to estimate rotavirus infection risks for a fingertip-to-surface and subsequent fingertip-to-mouth contact. Experimental findings supported the transfer gradient assumption. Through ABC, the model explained concentration changes more consistently when concentrations on the fingertip and surface were similar. Future studies evaluating microbial transfer should consider accounting for differing fingertip-to-surface and surface-to-fingertip transfer efficiencies and extend this work for other microbial types

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore